# pytorch_diffusion + derived encoder decoder import math import torch import torch.nn as nn import numpy as np import logging from comfy import model_management import comfy.ops ops = comfy.ops.disable_weight_init if model_management.xformers_enabled_vae(): import xformers import xformers.ops def get_timestep_embedding(timesteps, embedding_dim): """ This matches the implementation in Denoising Diffusion Probabilistic Models: From Fairseq. Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ assert len(timesteps.shape) == 1 half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) emb = emb.to(device=timesteps.device) emb = timesteps.float()[:, None] * emb[None, :] emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) if embedding_dim % 2 == 1: # zero pad emb = torch.nn.functional.pad(emb, (0,1,0,0)) return emb def nonlinearity(x): # swish return x*torch.sigmoid(x) def Normalize(in_channels, num_groups=32): return ops.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) class VideoConv3d(nn.Module): def __init__(self, n_channels, out_channels, kernel_size, stride=1, dilation=1, padding_mode='replicate', padding=1, **kwargs): super().__init__() self.padding_mode = padding_mode if padding != 0: padding = (padding, padding, padding, padding, kernel_size - 1, 0) else: kwargs["padding"] = padding self.padding = padding self.conv = ops.Conv3d(n_channels, out_channels, kernel_size, stride=stride, dilation=dilation, **kwargs) def forward(self, x): if self.padding != 0: x = torch.nn.functional.pad(x, self.padding, mode=self.padding_mode) return self.conv(x) def interpolate_up(x, scale_factor): try: return torch.nn.functional.interpolate(x, scale_factor=scale_factor, mode="nearest") except: #operation not implemented for bf16 orig_shape = list(x.shape) out_shape = orig_shape[:2] for i in range(len(orig_shape) - 2): out_shape.append(round(orig_shape[i + 2] * scale_factor[i])) out = torch.empty(out_shape, dtype=x.dtype, layout=x.layout, device=x.device) split = 8 l = out.shape[1] // split for i in range(0, out.shape[1], l): out[:,i:i+l] = torch.nn.functional.interpolate(x[:,i:i+l].to(torch.float32), scale_factor=scale_factor, mode="nearest").to(x.dtype) return out class Upsample(nn.Module): def __init__(self, in_channels, with_conv, conv_op=ops.Conv2d, scale_factor=2.0): super().__init__() self.with_conv = with_conv self.scale_factor = scale_factor if self.with_conv: self.conv = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): scale_factor = self.scale_factor if not isinstance(scale_factor, tuple): scale_factor = (scale_factor,) * (x.ndim - 2) if x.ndim == 5 and scale_factor[0] > 1.0: t = x.shape[2] if t > 1: a, b = x.split((1, t - 1), dim=2) del x b = interpolate_up(b, scale_factor) else: a = x a = interpolate_up(a.squeeze(2), scale_factor=scale_factor[1:]).unsqueeze(2) if t > 1: x = torch.cat((a, b), dim=2) else: x = a else: x = interpolate_up(x, self.scale_factor) if self.with_conv: x = self.conv(x) return x class Downsample(nn.Module): def __init__(self, in_channels, with_conv, stride=2, conv_op=ops.Conv2d): super().__init__() self.with_conv = with_conv if self.with_conv: # no asymmetric padding in torch conv, must do it ourselves self.conv = conv_op(in_channels, in_channels, kernel_size=3, stride=stride, padding=0) def forward(self, x): if self.with_conv: if x.ndim == 4: pad = (0, 1, 0, 1) mode = "constant" x = torch.nn.functional.pad(x, pad, mode=mode, value=0) elif x.ndim == 5: pad = (1, 1, 1, 1, 2, 0) mode = "replicate" x = torch.nn.functional.pad(x, pad, mode=mode) x = self.conv(x) else: x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) return x class ResnetBlock(nn.Module): def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512, conv_op=ops.Conv2d): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.swish = torch.nn.SiLU(inplace=True) self.norm1 = Normalize(in_channels) self.conv1 = conv_op(in_channels, out_channels, kernel_size=3, stride=1, padding=1) if temb_channels > 0: self.temb_proj = ops.Linear(temb_channels, out_channels) self.norm2 = Normalize(out_channels) self.dropout = torch.nn.Dropout(dropout, inplace=True) self.conv2 = conv_op(out_channels, out_channels, kernel_size=3, stride=1, padding=1) if self.in_channels != self.out_channels: if self.use_conv_shortcut: self.conv_shortcut = conv_op(in_channels, out_channels, kernel_size=3, stride=1, padding=1) else: self.nin_shortcut = conv_op(in_channels, out_channels, kernel_size=1, stride=1, padding=0) def forward(self, x, temb): h = x h = self.norm1(h) h = self.swish(h) h = self.conv1(h) if temb is not None: h = h + self.temb_proj(self.swish(temb))[:,:,None,None] h = self.norm2(h) h = self.swish(h) h = self.dropout(h) h = self.conv2(h) if self.in_channels != self.out_channels: if self.use_conv_shortcut: x = self.conv_shortcut(x) else: x = self.nin_shortcut(x) return x+h def slice_attention(q, k, v): r1 = torch.zeros_like(k, device=q.device) scale = (int(q.shape[-1])**(-0.5)) mem_free_total = model_management.get_free_memory(q.device) tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size() modifier = 3 if q.element_size() == 2 else 2.5 mem_required = tensor_size * modifier steps = 1 if mem_required > mem_free_total: steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2))) while True: try: slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] for i in range(0, q.shape[1], slice_size): end = i + slice_size s1 = torch.bmm(q[:, i:end], k) * scale s2 = torch.nn.functional.softmax(s1, dim=2).permute(0,2,1) del s1 r1[:, :, i:end] = torch.bmm(v, s2) del s2 break except model_management.OOM_EXCEPTION as e: model_management.soft_empty_cache(True) steps *= 2 if steps > 128: raise e logging.warning("out of memory error, increasing steps and trying again {}".format(steps)) return r1 def normal_attention(q, k, v): # compute attention orig_shape = q.shape b = orig_shape[0] c = orig_shape[1] q = q.reshape(b, c, -1) q = q.permute(0, 2, 1) # b,hw,c k = k.reshape(b, c, -1) # b,c,hw v = v.reshape(b, c, -1) r1 = slice_attention(q, k, v) h_ = r1.reshape(orig_shape) del r1 return h_ def xformers_attention(q, k, v): # compute attention orig_shape = q.shape B = orig_shape[0] C = orig_shape[1] q, k, v = map( lambda t: t.view(B, C, -1).transpose(1, 2).contiguous(), (q, k, v), ) try: out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) out = out.transpose(1, 2).reshape(orig_shape) except NotImplementedError: out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(orig_shape) return out def pytorch_attention(q, k, v): # compute attention orig_shape = q.shape B = orig_shape[0] C = orig_shape[1] q, k, v = map( lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(), (q, k, v), ) try: out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False) out = out.transpose(2, 3).reshape(orig_shape) except model_management.OOM_EXCEPTION: logging.warning("scaled_dot_product_attention OOMed: switched to slice attention") out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(orig_shape) return out class AttnBlock(nn.Module): def __init__(self, in_channels, conv_op=ops.Conv2d): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = conv_op(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = conv_op(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = conv_op(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = conv_op(in_channels, in_channels, kernel_size=1, stride=1, padding=0) if model_management.xformers_enabled_vae(): logging.info("Using xformers attention in VAE") self.optimized_attention = xformers_attention elif model_management.pytorch_attention_enabled(): logging.info("Using pytorch attention in VAE") self.optimized_attention = pytorch_attention else: logging.info("Using split attention in VAE") self.optimized_attention = normal_attention def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) h_ = self.optimized_attention(q, k, v) h_ = self.proj_out(h_) return x+h_ def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None, conv_op=ops.Conv2d): return AttnBlock(in_channels, conv_op=conv_op) class Model(nn.Module): def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"): super().__init__() if use_linear_attn: attn_type = "linear" self.ch = ch self.temb_ch = self.ch*4 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels self.use_timestep = use_timestep if self.use_timestep: # timestep embedding self.temb = nn.Module() self.temb.dense = nn.ModuleList([ ops.Linear(self.ch, self.temb_ch), ops.Linear(self.temb_ch, self.temb_ch), ]) # downsampling self.conv_in = ops.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1) curr_res = resolution in_ch_mult = (1,)+tuple(ch_mult) self.down = nn.ModuleList() for i_level in range(self.num_resolutions): block = nn.ModuleList() attn = nn.ModuleList() block_in = ch*in_ch_mult[i_level] block_out = ch*ch_mult[i_level] for i_block in range(self.num_res_blocks): block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout)) block_in = block_out if curr_res in attn_resolutions: attn.append(make_attn(block_in, attn_type=attn_type)) down = nn.Module() down.block = block down.attn = attn if i_level != self.num_resolutions-1: down.downsample = Downsample(block_in, resamp_with_conv) curr_res = curr_res // 2 self.down.append(down) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) # upsampling self.up = nn.ModuleList() for i_level in reversed(range(self.num_resolutions)): block = nn.ModuleList() attn = nn.ModuleList() block_out = ch*ch_mult[i_level] skip_in = ch*ch_mult[i_level] for i_block in range(self.num_res_blocks+1): if i_block == self.num_res_blocks: skip_in = ch*in_ch_mult[i_level] block.append(ResnetBlock(in_channels=block_in+skip_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout)) block_in = block_out if curr_res in attn_resolutions: attn.append(make_attn(block_in, attn_type=attn_type)) up = nn.Module() up.block = block up.attn = attn if i_level != 0: up.upsample = Upsample(block_in, resamp_with_conv) curr_res = curr_res * 2 self.up.insert(0, up) # prepend to get consistent order # end self.norm_out = Normalize(block_in) self.conv_out = ops.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1) def forward(self, x, t=None, context=None): #assert x.shape[2] == x.shape[3] == self.resolution if context is not None: # assume aligned context, cat along channel axis x = torch.cat((x, context), dim=1) if self.use_timestep: # timestep embedding assert t is not None temb = get_timestep_embedding(t, self.ch) temb = self.temb.dense[0](temb) temb = nonlinearity(temb) temb = self.temb.dense[1](temb) else: temb = None # downsampling hs = [self.conv_in(x)] for i_level in range(self.num_resolutions): for i_block in range(self.num_res_blocks): h = self.down[i_level].block[i_block](hs[-1], temb) if len(self.down[i_level].attn) > 0: h = self.down[i_level].attn[i_block](h) hs.append(h) if i_level != self.num_resolutions-1: hs.append(self.down[i_level].downsample(hs[-1])) # middle h = hs[-1] h = self.mid.block_1(h, temb) h = self.mid.attn_1(h) h = self.mid.block_2(h, temb) # upsampling for i_level in reversed(range(self.num_resolutions)): for i_block in range(self.num_res_blocks+1): h = self.up[i_level].block[i_block]( torch.cat([h, hs.pop()], dim=1), temb) if len(self.up[i_level].attn) > 0: h = self.up[i_level].attn[i_block](h) if i_level != 0: h = self.up[i_level].upsample(h) # end h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h def get_last_layer(self): return self.conv_out.weight class Encoder(nn.Module): def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla", conv3d=False, time_compress=None, **ignore_kwargs): super().__init__() if use_linear_attn: attn_type = "linear" self.ch = ch self.temb_ch = 0 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels if conv3d: conv_op = VideoConv3d mid_attn_conv_op = ops.Conv3d else: conv_op = ops.Conv2d mid_attn_conv_op = ops.Conv2d # downsampling self.conv_in = conv_op(in_channels, self.ch, kernel_size=3, stride=1, padding=1) curr_res = resolution in_ch_mult = (1,)+tuple(ch_mult) self.in_ch_mult = in_ch_mult self.down = nn.ModuleList() for i_level in range(self.num_resolutions): block = nn.ModuleList() attn = nn.ModuleList() block_in = ch*in_ch_mult[i_level] block_out = ch*ch_mult[i_level] for i_block in range(self.num_res_blocks): block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout, conv_op=conv_op)) block_in = block_out if curr_res in attn_resolutions: attn.append(make_attn(block_in, attn_type=attn_type, conv_op=conv_op)) down = nn.Module() down.block = block down.attn = attn if i_level != self.num_resolutions-1: stride = 2 if time_compress is not None: if (self.num_resolutions - 1 - i_level) > math.log2(time_compress): stride = (1, 2, 2) down.downsample = Downsample(block_in, resamp_with_conv, stride=stride, conv_op=conv_op) curr_res = curr_res // 2 self.down.append(down) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout, conv_op=conv_op) self.mid.attn_1 = make_attn(block_in, attn_type=attn_type, conv_op=mid_attn_conv_op) self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout, conv_op=conv_op) # end self.norm_out = Normalize(block_in) self.conv_out = conv_op(block_in, 2*z_channels if double_z else z_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): # timestep embedding temb = None # downsampling h = self.conv_in(x) for i_level in range(self.num_resolutions): for i_block in range(self.num_res_blocks): h = self.down[i_level].block[i_block](h, temb) if len(self.down[i_level].attn) > 0: h = self.down[i_level].attn[i_block](h) if i_level != self.num_resolutions-1: h = self.down[i_level].downsample(h) # middle h = self.mid.block_1(h, temb) h = self.mid.attn_1(h) h = self.mid.block_2(h, temb) # end h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h class Decoder(nn.Module): def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False, conv_out_op=ops.Conv2d, resnet_op=ResnetBlock, attn_op=AttnBlock, conv3d=False, time_compress=None, **ignorekwargs): super().__init__() self.ch = ch self.temb_ch = 0 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels self.give_pre_end = give_pre_end self.tanh_out = tanh_out if conv3d: conv_op = VideoConv3d conv_out_op = VideoConv3d mid_attn_conv_op = ops.Conv3d else: conv_op = ops.Conv2d mid_attn_conv_op = ops.Conv2d # compute block_in and curr_res at lowest res block_in = ch*ch_mult[self.num_resolutions-1] curr_res = resolution // 2**(self.num_resolutions-1) self.z_shape = (1,z_channels,curr_res,curr_res) logging.debug("Working with z of shape {} = {} dimensions.".format( self.z_shape, np.prod(self.z_shape))) # z to block_in self.conv_in = conv_op(z_channels, block_in, kernel_size=3, stride=1, padding=1) # middle self.mid = nn.Module() self.mid.block_1 = resnet_op(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout, conv_op=conv_op) self.mid.attn_1 = attn_op(block_in, conv_op=mid_attn_conv_op) self.mid.block_2 = resnet_op(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout, conv_op=conv_op) # upsampling self.up = nn.ModuleList() for i_level in reversed(range(self.num_resolutions)): block = nn.ModuleList() attn = nn.ModuleList() block_out = ch*ch_mult[i_level] for i_block in range(self.num_res_blocks+1): block.append(resnet_op(in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout, conv_op=conv_op)) block_in = block_out if curr_res in attn_resolutions: attn.append(attn_op(block_in, conv_op=conv_op)) up = nn.Module() up.block = block up.attn = attn if i_level != 0: scale_factor = 2.0 if time_compress is not None: if i_level > math.log2(time_compress): scale_factor = (1.0, 2.0, 2.0) up.upsample = Upsample(block_in, resamp_with_conv, conv_op=conv_op, scale_factor=scale_factor) curr_res = curr_res * 2 self.up.insert(0, up) # prepend to get consistent order # end self.norm_out = Normalize(block_in) self.conv_out = conv_out_op(block_in, out_ch, kernel_size=3, stride=1, padding=1) def forward(self, z, **kwargs): #assert z.shape[1:] == self.z_shape[1:] self.last_z_shape = z.shape # timestep embedding temb = None # z to block_in h = self.conv_in(z) # middle h = self.mid.block_1(h, temb, **kwargs) h = self.mid.attn_1(h, **kwargs) h = self.mid.block_2(h, temb, **kwargs) # upsampling for i_level in reversed(range(self.num_resolutions)): for i_block in range(self.num_res_blocks+1): h = self.up[i_level].block[i_block](h, temb, **kwargs) if len(self.up[i_level].attn) > 0: h = self.up[i_level].attn[i_block](h, **kwargs) if i_level != 0: h = self.up[i_level].upsample(h) # end if self.give_pre_end: return h h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h, **kwargs) if self.tanh_out: h = torch.tanh(h) return h