#AuraFlow MMDiT #Originally written by the AuraFlow Authors import math import torch import torch.nn as nn import torch.nn.functional as F from comfy.ldm.modules.attention import optimized_attention import comfy.ops import comfy.ldm.common_dit def modulate(x, shift, scale): return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) def find_multiple(n: int, k: int) -> int: if n % k == 0: return n return n + k - (n % k) class MLP(nn.Module): def __init__(self, dim, hidden_dim=None, dtype=None, device=None, operations=None) -> None: super().__init__() if hidden_dim is None: hidden_dim = 4 * dim n_hidden = int(2 * hidden_dim / 3) n_hidden = find_multiple(n_hidden, 256) self.c_fc1 = operations.Linear(dim, n_hidden, bias=False, dtype=dtype, device=device) self.c_fc2 = operations.Linear(dim, n_hidden, bias=False, dtype=dtype, device=device) self.c_proj = operations.Linear(n_hidden, dim, bias=False, dtype=dtype, device=device) def forward(self, x: torch.Tensor) -> torch.Tensor: x = F.silu(self.c_fc1(x)) * self.c_fc2(x) x = self.c_proj(x) return x class MultiHeadLayerNorm(nn.Module): def __init__(self, hidden_size=None, eps=1e-5, dtype=None, device=None): # Copy pasta from https://github.com/huggingface/transformers/blob/e5f71ecaae50ea476d1e12351003790273c4b2ed/src/transformers/models/cohere/modeling_cohere.py#L78 super().__init__() self.weight = nn.Parameter(torch.empty(hidden_size, dtype=dtype, device=device)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) mean = hidden_states.mean(-1, keepdim=True) variance = (hidden_states - mean).pow(2).mean(-1, keepdim=True) hidden_states = (hidden_states - mean) * torch.rsqrt( variance + self.variance_epsilon ) hidden_states = self.weight.to(torch.float32) * hidden_states return hidden_states.to(input_dtype) class SingleAttention(nn.Module): def __init__(self, dim, n_heads, mh_qknorm=False, dtype=None, device=None, operations=None): super().__init__() self.n_heads = n_heads self.head_dim = dim // n_heads # this is for cond self.w1q = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device) self.w1k = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device) self.w1v = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device) self.w1o = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device) self.q_norm1 = ( MultiHeadLayerNorm((self.n_heads, self.head_dim), dtype=dtype, device=device) if mh_qknorm else operations.LayerNorm(self.head_dim, elementwise_affine=False, dtype=dtype, device=device) ) self.k_norm1 = ( MultiHeadLayerNorm((self.n_heads, self.head_dim), dtype=dtype, device=device) if mh_qknorm else operations.LayerNorm(self.head_dim, elementwise_affine=False, dtype=dtype, device=device) ) #@torch.compile() def forward(self, c): bsz, seqlen1, _ = c.shape q, k, v = self.w1q(c), self.w1k(c), self.w1v(c) q = q.view(bsz, seqlen1, self.n_heads, self.head_dim) k = k.view(bsz, seqlen1, self.n_heads, self.head_dim) v = v.view(bsz, seqlen1, self.n_heads, self.head_dim) q, k = self.q_norm1(q), self.k_norm1(k) output = optimized_attention(q.permute(0, 2, 1, 3), k.permute(0, 2, 1, 3), v.permute(0, 2, 1, 3), self.n_heads, skip_reshape=True) c = self.w1o(output) return c class DoubleAttention(nn.Module): def __init__(self, dim, n_heads, mh_qknorm=False, dtype=None, device=None, operations=None): super().__init__() self.n_heads = n_heads self.head_dim = dim // n_heads # this is for cond self.w1q = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device) self.w1k = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device) self.w1v = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device) self.w1o = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device) # this is for x self.w2q = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device) self.w2k = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device) self.w2v = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device) self.w2o = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device) self.q_norm1 = ( MultiHeadLayerNorm((self.n_heads, self.head_dim), dtype=dtype, device=device) if mh_qknorm else operations.LayerNorm(self.head_dim, elementwise_affine=False, dtype=dtype, device=device) ) self.k_norm1 = ( MultiHeadLayerNorm((self.n_heads, self.head_dim), dtype=dtype, device=device) if mh_qknorm else operations.LayerNorm(self.head_dim, elementwise_affine=False, dtype=dtype, device=device) ) self.q_norm2 = ( MultiHeadLayerNorm((self.n_heads, self.head_dim), dtype=dtype, device=device) if mh_qknorm else operations.LayerNorm(self.head_dim, elementwise_affine=False, dtype=dtype, device=device) ) self.k_norm2 = ( MultiHeadLayerNorm((self.n_heads, self.head_dim), dtype=dtype, device=device) if mh_qknorm else operations.LayerNorm(self.head_dim, elementwise_affine=False, dtype=dtype, device=device) ) #@torch.compile() def forward(self, c, x): bsz, seqlen1, _ = c.shape bsz, seqlen2, _ = x.shape cq, ck, cv = self.w1q(c), self.w1k(c), self.w1v(c) cq = cq.view(bsz, seqlen1, self.n_heads, self.head_dim) ck = ck.view(bsz, seqlen1, self.n_heads, self.head_dim) cv = cv.view(bsz, seqlen1, self.n_heads, self.head_dim) cq, ck = self.q_norm1(cq), self.k_norm1(ck) xq, xk, xv = self.w2q(x), self.w2k(x), self.w2v(x) xq = xq.view(bsz, seqlen2, self.n_heads, self.head_dim) xk = xk.view(bsz, seqlen2, self.n_heads, self.head_dim) xv = xv.view(bsz, seqlen2, self.n_heads, self.head_dim) xq, xk = self.q_norm2(xq), self.k_norm2(xk) # concat all q, k, v = ( torch.cat([cq, xq], dim=1), torch.cat([ck, xk], dim=1), torch.cat([cv, xv], dim=1), ) output = optimized_attention(q.permute(0, 2, 1, 3), k.permute(0, 2, 1, 3), v.permute(0, 2, 1, 3), self.n_heads, skip_reshape=True) c, x = output.split([seqlen1, seqlen2], dim=1) c = self.w1o(c) x = self.w2o(x) return c, x class MMDiTBlock(nn.Module): def __init__(self, dim, heads=8, global_conddim=1024, is_last=False, dtype=None, device=None, operations=None): super().__init__() self.normC1 = operations.LayerNorm(dim, elementwise_affine=False, dtype=dtype, device=device) self.normC2 = operations.LayerNorm(dim, elementwise_affine=False, dtype=dtype, device=device) if not is_last: self.mlpC = MLP(dim, hidden_dim=dim * 4, dtype=dtype, device=device, operations=operations) self.modC = nn.Sequential( nn.SiLU(), operations.Linear(global_conddim, 6 * dim, bias=False, dtype=dtype, device=device), ) else: self.modC = nn.Sequential( nn.SiLU(), operations.Linear(global_conddim, 2 * dim, bias=False, dtype=dtype, device=device), ) self.normX1 = operations.LayerNorm(dim, elementwise_affine=False, dtype=dtype, device=device) self.normX2 = operations.LayerNorm(dim, elementwise_affine=False, dtype=dtype, device=device) self.mlpX = MLP(dim, hidden_dim=dim * 4, dtype=dtype, device=device, operations=operations) self.modX = nn.Sequential( nn.SiLU(), operations.Linear(global_conddim, 6 * dim, bias=False, dtype=dtype, device=device), ) self.attn = DoubleAttention(dim, heads, dtype=dtype, device=device, operations=operations) self.is_last = is_last #@torch.compile() def forward(self, c, x, global_cond, **kwargs): cres, xres = c, x cshift_msa, cscale_msa, cgate_msa, cshift_mlp, cscale_mlp, cgate_mlp = ( self.modC(global_cond).chunk(6, dim=1) ) c = modulate(self.normC1(c), cshift_msa, cscale_msa) # xpath xshift_msa, xscale_msa, xgate_msa, xshift_mlp, xscale_mlp, xgate_mlp = ( self.modX(global_cond).chunk(6, dim=1) ) x = modulate(self.normX1(x), xshift_msa, xscale_msa) # attention c, x = self.attn(c, x) c = self.normC2(cres + cgate_msa.unsqueeze(1) * c) c = cgate_mlp.unsqueeze(1) * self.mlpC(modulate(c, cshift_mlp, cscale_mlp)) c = cres + c x = self.normX2(xres + xgate_msa.unsqueeze(1) * x) x = xgate_mlp.unsqueeze(1) * self.mlpX(modulate(x, xshift_mlp, xscale_mlp)) x = xres + x return c, x class DiTBlock(nn.Module): # like MMDiTBlock, but it only has X def __init__(self, dim, heads=8, global_conddim=1024, dtype=None, device=None, operations=None): super().__init__() self.norm1 = operations.LayerNorm(dim, elementwise_affine=False, dtype=dtype, device=device) self.norm2 = operations.LayerNorm(dim, elementwise_affine=False, dtype=dtype, device=device) self.modCX = nn.Sequential( nn.SiLU(), operations.Linear(global_conddim, 6 * dim, bias=False, dtype=dtype, device=device), ) self.attn = SingleAttention(dim, heads, dtype=dtype, device=device, operations=operations) self.mlp = MLP(dim, hidden_dim=dim * 4, dtype=dtype, device=device, operations=operations) #@torch.compile() def forward(self, cx, global_cond, **kwargs): cxres = cx shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.modCX( global_cond ).chunk(6, dim=1) cx = modulate(self.norm1(cx), shift_msa, scale_msa) cx = self.attn(cx) cx = self.norm2(cxres + gate_msa.unsqueeze(1) * cx) mlpout = self.mlp(modulate(cx, shift_mlp, scale_mlp)) cx = gate_mlp.unsqueeze(1) * mlpout cx = cxres + cx return cx class TimestepEmbedder(nn.Module): def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None, operations=None): super().__init__() self.mlp = nn.Sequential( operations.Linear(frequency_embedding_size, hidden_size, dtype=dtype, device=device), nn.SiLU(), operations.Linear(hidden_size, hidden_size, dtype=dtype, device=device), ) self.frequency_embedding_size = frequency_embedding_size @staticmethod def timestep_embedding(t, dim, max_period=10000): half = dim // 2 freqs = 1000 * torch.exp( -math.log(max_period) * torch.arange(start=0, end=half) / half ).to(t.device) args = t[:, None] * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat( [embedding, torch.zeros_like(embedding[:, :1])], dim=-1 ) return embedding #@torch.compile() def forward(self, t, dtype): t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype) t_emb = self.mlp(t_freq) return t_emb class MMDiT(nn.Module): def __init__( self, in_channels=4, out_channels=4, patch_size=2, dim=3072, n_layers=36, n_double_layers=4, n_heads=12, global_conddim=3072, cond_seq_dim=2048, max_seq=32 * 32, device=None, dtype=None, operations=None, ): super().__init__() self.dtype = dtype self.t_embedder = TimestepEmbedder(global_conddim, dtype=dtype, device=device, operations=operations) self.cond_seq_linear = operations.Linear( cond_seq_dim, dim, bias=False, dtype=dtype, device=device ) # linear for something like text sequence. self.init_x_linear = operations.Linear( patch_size * patch_size * in_channels, dim, dtype=dtype, device=device ) # init linear for patchified image. self.positional_encoding = nn.Parameter(torch.empty(1, max_seq, dim, dtype=dtype, device=device)) self.register_tokens = nn.Parameter(torch.empty(1, 8, dim, dtype=dtype, device=device)) self.double_layers = nn.ModuleList([]) self.single_layers = nn.ModuleList([]) for idx in range(n_double_layers): self.double_layers.append( MMDiTBlock(dim, n_heads, global_conddim, is_last=(idx == n_layers - 1), dtype=dtype, device=device, operations=operations) ) for idx in range(n_double_layers, n_layers): self.single_layers.append( DiTBlock(dim, n_heads, global_conddim, dtype=dtype, device=device, operations=operations) ) self.final_linear = operations.Linear( dim, patch_size * patch_size * out_channels, bias=False, dtype=dtype, device=device ) self.modF = nn.Sequential( nn.SiLU(), operations.Linear(global_conddim, 2 * dim, bias=False, dtype=dtype, device=device), ) self.out_channels = out_channels self.patch_size = patch_size self.n_double_layers = n_double_layers self.n_layers = n_layers self.h_max = round(max_seq**0.5) self.w_max = round(max_seq**0.5) @torch.no_grad() def extend_pe(self, init_dim=(16, 16), target_dim=(64, 64)): # extend pe pe_data = self.positional_encoding.data.squeeze(0)[: init_dim[0] * init_dim[1]] pe_as_2d = pe_data.view(init_dim[0], init_dim[1], -1).permute(2, 0, 1) # now we need to extend this to target_dim. for this we will use interpolation. # we will use torch.nn.functional.interpolate pe_as_2d = F.interpolate( pe_as_2d.unsqueeze(0), size=target_dim, mode="bilinear" ) pe_new = pe_as_2d.squeeze(0).permute(1, 2, 0).flatten(0, 1) self.positional_encoding.data = pe_new.unsqueeze(0).contiguous() self.h_max, self.w_max = target_dim def pe_selection_index_based_on_dim(self, h, w): h_p, w_p = h // self.patch_size, w // self.patch_size original_pe_indexes = torch.arange(self.positional_encoding.shape[1]) original_pe_indexes = original_pe_indexes.view(self.h_max, self.w_max) starth = self.h_max // 2 - h_p // 2 endh =starth + h_p startw = self.w_max // 2 - w_p // 2 endw = startw + w_p original_pe_indexes = original_pe_indexes[ starth:endh, startw:endw ] return original_pe_indexes.flatten() def unpatchify(self, x, h, w): c = self.out_channels p = self.patch_size x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) x = torch.einsum("nhwpqc->nchpwq", x) imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p)) return imgs def patchify(self, x): B, C, H, W = x.size() x = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size)) x = x.view( B, C, (H + 1) // self.patch_size, self.patch_size, (W + 1) // self.patch_size, self.patch_size, ) x = x.permute(0, 2, 4, 1, 3, 5).flatten(-3).flatten(1, 2) return x def apply_pos_embeds(self, x, h, w): h = (h + 1) // self.patch_size w = (w + 1) // self.patch_size max_dim = max(h, w) cur_dim = self.h_max pos_encoding = comfy.ops.cast_to_input(self.positional_encoding.reshape(1, cur_dim, cur_dim, -1), x) if max_dim > cur_dim: pos_encoding = F.interpolate(pos_encoding.movedim(-1, 1), (max_dim, max_dim), mode="bilinear").movedim(1, -1) cur_dim = max_dim from_h = (cur_dim - h) // 2 from_w = (cur_dim - w) // 2 pos_encoding = pos_encoding[:,from_h:from_h+h,from_w:from_w+w] return x + pos_encoding.reshape(1, -1, self.positional_encoding.shape[-1]) def forward(self, x, timestep, context, transformer_options={}, **kwargs): patches_replace = transformer_options.get("patches_replace", {}) # patchify x, add PE b, c, h, w = x.shape # pe_indexes = self.pe_selection_index_based_on_dim(h, w) # print(pe_indexes, pe_indexes.shape) x = self.init_x_linear(self.patchify(x)) # B, T_x, D x = self.apply_pos_embeds(x, h, w) # x = x + self.positional_encoding[:, : x.size(1)].to(device=x.device, dtype=x.dtype) # x = x + self.positional_encoding[:, pe_indexes].to(device=x.device, dtype=x.dtype) # process conditions for MMDiT Blocks c_seq = context # B, T_c, D_c t = timestep c = self.cond_seq_linear(c_seq) # B, T_c, D c = torch.cat([comfy.ops.cast_to_input(self.register_tokens, c).repeat(c.size(0), 1, 1), c], dim=1) global_cond = self.t_embedder(t, x.dtype) # B, D blocks_replace = patches_replace.get("dit", {}) if len(self.double_layers) > 0: for i, layer in enumerate(self.double_layers): if ("double_block", i) in blocks_replace: def block_wrap(args): out = {} out["txt"], out["img"] = layer(args["txt"], args["img"], args["vec"]) return out out = blocks_replace[("double_block", i)]({"img": x, "txt": c, "vec": global_cond}, {"original_block": block_wrap}) c = out["txt"] x = out["img"] else: c, x = layer(c, x, global_cond, **kwargs) if len(self.single_layers) > 0: c_len = c.size(1) cx = torch.cat([c, x], dim=1) for i, layer in enumerate(self.single_layers): if ("single_block", i) in blocks_replace: def block_wrap(args): out = {} out["img"] = layer(args["img"], args["vec"]) return out out = blocks_replace[("single_block", i)]({"img": cx, "vec": global_cond}, {"original_block": block_wrap}) cx = out["img"] else: cx = layer(cx, global_cond, **kwargs) x = cx[:, c_len:] fshift, fscale = self.modF(global_cond).chunk(2, dim=1) x = modulate(x, fshift, fscale) x = self.final_linear(x) x = self.unpatchify(x, (h + 1) // self.patch_size, (w + 1) // self.patch_size)[:,:,:h,:w] return x