import torch from torch import nn import comfy.ldm.modules.attention from comfy.ldm.genmo.joint_model.layers import RMSNorm import comfy.ldm.common_dit from einops import rearrange import math from typing import Dict, Optional, Tuple from .symmetric_patchifier import SymmetricPatchifier def get_timestep_embedding( timesteps: torch.Tensor, embedding_dim: int, flip_sin_to_cos: bool = False, downscale_freq_shift: float = 1, scale: float = 1, max_period: int = 10000, ): """ This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings. Args timesteps (torch.Tensor): a 1-D Tensor of N indices, one per batch element. These may be fractional. embedding_dim (int): the dimension of the output. flip_sin_to_cos (bool): Whether the embedding order should be `cos, sin` (if True) or `sin, cos` (if False) downscale_freq_shift (float): Controls the delta between frequencies between dimensions scale (float): Scaling factor applied to the embeddings. max_period (int): Controls the maximum frequency of the embeddings Returns torch.Tensor: an [N x dim] Tensor of positional embeddings. """ assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array" half_dim = embedding_dim // 2 exponent = -math.log(max_period) * torch.arange( start=0, end=half_dim, dtype=torch.float32, device=timesteps.device ) exponent = exponent / (half_dim - downscale_freq_shift) emb = torch.exp(exponent) emb = timesteps[:, None].float() * emb[None, :] # scale embeddings emb = scale * emb # concat sine and cosine embeddings emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1) # flip sine and cosine embeddings if flip_sin_to_cos: emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1) # zero pad if embedding_dim % 2 == 1: emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) return emb class TimestepEmbedding(nn.Module): def __init__( self, in_channels: int, time_embed_dim: int, act_fn: str = "silu", out_dim: int = None, post_act_fn: Optional[str] = None, cond_proj_dim=None, sample_proj_bias=True, dtype=None, device=None, operations=None, ): super().__init__() self.linear_1 = operations.Linear(in_channels, time_embed_dim, sample_proj_bias, dtype=dtype, device=device) if cond_proj_dim is not None: self.cond_proj = operations.Linear(cond_proj_dim, in_channels, bias=False, dtype=dtype, device=device) else: self.cond_proj = None self.act = nn.SiLU() if out_dim is not None: time_embed_dim_out = out_dim else: time_embed_dim_out = time_embed_dim self.linear_2 = operations.Linear(time_embed_dim, time_embed_dim_out, sample_proj_bias, dtype=dtype, device=device) if post_act_fn is None: self.post_act = None # else: # self.post_act = get_activation(post_act_fn) def forward(self, sample, condition=None): if condition is not None: sample = sample + self.cond_proj(condition) sample = self.linear_1(sample) if self.act is not None: sample = self.act(sample) sample = self.linear_2(sample) if self.post_act is not None: sample = self.post_act(sample) return sample class Timesteps(nn.Module): def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float, scale: int = 1): super().__init__() self.num_channels = num_channels self.flip_sin_to_cos = flip_sin_to_cos self.downscale_freq_shift = downscale_freq_shift self.scale = scale def forward(self, timesteps): t_emb = get_timestep_embedding( timesteps, self.num_channels, flip_sin_to_cos=self.flip_sin_to_cos, downscale_freq_shift=self.downscale_freq_shift, scale=self.scale, ) return t_emb class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module): """ For PixArt-Alpha. Reference: https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L164C9-L168C29 """ def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False, dtype=None, device=None, operations=None): super().__init__() self.outdim = size_emb_dim self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim, dtype=dtype, device=device, operations=operations) def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype): timesteps_proj = self.time_proj(timestep) timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D) return timesteps_emb class AdaLayerNormSingle(nn.Module): r""" Norm layer adaptive layer norm single (adaLN-single). As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3). Parameters: embedding_dim (`int`): The size of each embedding vector. use_additional_conditions (`bool`): To use additional conditions for normalization or not. """ def __init__(self, embedding_dim: int, use_additional_conditions: bool = False, dtype=None, device=None, operations=None): super().__init__() self.emb = PixArtAlphaCombinedTimestepSizeEmbeddings( embedding_dim, size_emb_dim=embedding_dim // 3, use_additional_conditions=use_additional_conditions, dtype=dtype, device=device, operations=operations ) self.silu = nn.SiLU() self.linear = operations.Linear(embedding_dim, 6 * embedding_dim, bias=True, dtype=dtype, device=device) def forward( self, timestep: torch.Tensor, added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, batch_size: Optional[int] = None, hidden_dtype: Optional[torch.dtype] = None, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: # No modulation happening here. added_cond_kwargs = added_cond_kwargs or {"resolution": None, "aspect_ratio": None} embedded_timestep = self.emb(timestep, **added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_dtype) return self.linear(self.silu(embedded_timestep)), embedded_timestep class PixArtAlphaTextProjection(nn.Module): """ Projects caption embeddings. Also handles dropout for classifier-free guidance. Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py """ def __init__(self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh", dtype=None, device=None, operations=None): super().__init__() if out_features is None: out_features = hidden_size self.linear_1 = operations.Linear(in_features=in_features, out_features=hidden_size, bias=True, dtype=dtype, device=device) if act_fn == "gelu_tanh": self.act_1 = nn.GELU(approximate="tanh") elif act_fn == "silu": self.act_1 = nn.SiLU() else: raise ValueError(f"Unknown activation function: {act_fn}") self.linear_2 = operations.Linear(in_features=hidden_size, out_features=out_features, bias=True, dtype=dtype, device=device) def forward(self, caption): hidden_states = self.linear_1(caption) hidden_states = self.act_1(hidden_states) hidden_states = self.linear_2(hidden_states) return hidden_states class GELU_approx(nn.Module): def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=None): super().__init__() self.proj = operations.Linear(dim_in, dim_out, dtype=dtype, device=device) def forward(self, x): return torch.nn.functional.gelu(self.proj(x), approximate="tanh") class FeedForward(nn.Module): def __init__(self, dim, dim_out, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=None): super().__init__() inner_dim = int(dim * mult) project_in = GELU_approx(dim, inner_dim, dtype=dtype, device=device, operations=operations) self.net = nn.Sequential( project_in, nn.Dropout(dropout), operations.Linear(inner_dim, dim_out, dtype=dtype, device=device) ) def forward(self, x): return self.net(x) def apply_rotary_emb(input_tensor, freqs_cis): #TODO: remove duplicate funcs and pick the best/fastest one cos_freqs = freqs_cis[0] sin_freqs = freqs_cis[1] t_dup = rearrange(input_tensor, "... (d r) -> ... d r", r=2) t1, t2 = t_dup.unbind(dim=-1) t_dup = torch.stack((-t2, t1), dim=-1) input_tensor_rot = rearrange(t_dup, "... d r -> ... (d r)") out = input_tensor * cos_freqs + input_tensor_rot * sin_freqs return out class CrossAttention(nn.Module): def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., attn_precision=None, dtype=None, device=None, operations=None): super().__init__() inner_dim = dim_head * heads context_dim = query_dim if context_dim is None else context_dim self.attn_precision = attn_precision self.heads = heads self.dim_head = dim_head self.q_norm = RMSNorm(inner_dim, dtype=dtype, device=device) self.k_norm = RMSNorm(inner_dim, dtype=dtype, device=device) self.to_q = operations.Linear(query_dim, inner_dim, bias=True, dtype=dtype, device=device) self.to_k = operations.Linear(context_dim, inner_dim, bias=True, dtype=dtype, device=device) self.to_v = operations.Linear(context_dim, inner_dim, bias=True, dtype=dtype, device=device) self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout)) def forward(self, x, context=None, mask=None, pe=None): q = self.to_q(x) context = x if context is None else context k = self.to_k(context) v = self.to_v(context) q = self.q_norm(q) k = self.k_norm(k) if pe is not None: q = apply_rotary_emb(q, pe) k = apply_rotary_emb(k, pe) if mask is None: out = comfy.ldm.modules.attention.optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision) else: out = comfy.ldm.modules.attention.optimized_attention_masked(q, k, v, self.heads, mask, attn_precision=self.attn_precision) return self.to_out(out) class BasicTransformerBlock(nn.Module): def __init__(self, dim, n_heads, d_head, context_dim=None, attn_precision=None, dtype=None, device=None, operations=None): super().__init__() self.attn_precision = attn_precision self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, context_dim=None, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations) self.ff = FeedForward(dim, dim_out=dim, glu=True, dtype=dtype, device=device, operations=operations) self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations) self.scale_shift_table = nn.Parameter(torch.empty(6, dim, device=device, dtype=dtype)) def forward(self, x, context=None, attention_mask=None, timestep=None, pe=None): shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None, None].to(device=x.device, dtype=x.dtype) + timestep.reshape(x.shape[0], timestep.shape[1], self.scale_shift_table.shape[0], -1)).unbind(dim=2) x += self.attn1(comfy.ldm.common_dit.rms_norm(x) * (1 + scale_msa) + shift_msa, pe=pe) * gate_msa x += self.attn2(x, context=context, mask=attention_mask) y = comfy.ldm.common_dit.rms_norm(x) * (1 + scale_mlp) + shift_mlp x += self.ff(y) * gate_mlp return x def get_fractional_positions(indices_grid, max_pos): fractional_positions = torch.stack( [ indices_grid[:, i] / max_pos[i] for i in range(3) ], dim=-1, ) return fractional_positions def precompute_freqs_cis(indices_grid, dim, out_dtype, theta=10000.0, max_pos=[20, 2048, 2048]): dtype = torch.float32 #self.dtype fractional_positions = get_fractional_positions(indices_grid, max_pos) start = 1 end = theta device = fractional_positions.device indices = theta ** ( torch.linspace( math.log(start, theta), math.log(end, theta), dim // 6, device=device, dtype=dtype, ) ) indices = indices.to(dtype=dtype) indices = indices * math.pi / 2 freqs = ( (indices * (fractional_positions.unsqueeze(-1) * 2 - 1)) .transpose(-1, -2) .flatten(2) ) cos_freq = freqs.cos().repeat_interleave(2, dim=-1) sin_freq = freqs.sin().repeat_interleave(2, dim=-1) if dim % 6 != 0: cos_padding = torch.ones_like(cos_freq[:, :, : dim % 6]) sin_padding = torch.zeros_like(cos_freq[:, :, : dim % 6]) cos_freq = torch.cat([cos_padding, cos_freq], dim=-1) sin_freq = torch.cat([sin_padding, sin_freq], dim=-1) return cos_freq.to(out_dtype), sin_freq.to(out_dtype) class LTXVModel(torch.nn.Module): def __init__(self, in_channels=128, cross_attention_dim=2048, attention_head_dim=64, num_attention_heads=32, caption_channels=4096, num_layers=28, positional_embedding_theta=10000.0, positional_embedding_max_pos=[20, 2048, 2048], dtype=None, device=None, operations=None, **kwargs): super().__init__() self.dtype = dtype self.out_channels = in_channels self.inner_dim = num_attention_heads * attention_head_dim self.patchify_proj = operations.Linear(in_channels, self.inner_dim, bias=True, dtype=dtype, device=device) self.adaln_single = AdaLayerNormSingle( self.inner_dim, use_additional_conditions=False, dtype=dtype, device=device, operations=operations ) # self.adaln_single.linear = operations.Linear(self.inner_dim, 4 * self.inner_dim, bias=True, dtype=dtype, device=device) self.caption_projection = PixArtAlphaTextProjection( in_features=caption_channels, hidden_size=self.inner_dim, dtype=dtype, device=device, operations=operations ) self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( self.inner_dim, num_attention_heads, attention_head_dim, context_dim=cross_attention_dim, # attn_precision=attn_precision, dtype=dtype, device=device, operations=operations ) for d in range(num_layers) ] ) self.scale_shift_table = nn.Parameter(torch.empty(2, self.inner_dim, dtype=dtype, device=device)) self.norm_out = operations.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) self.proj_out = operations.Linear(self.inner_dim, self.out_channels, dtype=dtype, device=device) self.patchifier = SymmetricPatchifier(1) def forward(self, x, timestep, context, attention_mask, frame_rate=25, guiding_latent=None, **kwargs): indices_grid = self.patchifier.get_grid( orig_num_frames=x.shape[2], orig_height=x.shape[3], orig_width=x.shape[4], batch_size=x.shape[0], scale_grid=((1 / frame_rate) * 8, 32, 32), #TODO: controlable frame rate device=x.device, ) if guiding_latent is not None: ts = torch.ones([x.shape[0], 1, x.shape[2], x.shape[3], x.shape[4]], device=x.device, dtype=x.dtype) input_ts = timestep.view([timestep.shape[0]] + [1] * (x.ndim - 1)) ts *= input_ts ts[:, :, 0] = 0.0 timestep = self.patchifier.patchify(ts) input_x = x.clone() x[:, :, 0] = guiding_latent[:, :, 0] orig_shape = list(x.shape) x = self.patchifier.patchify(x) x = self.patchify_proj(x) timestep = timestep * 1000.0 attention_mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])) attention_mask = attention_mask.masked_fill(attention_mask.to(torch.bool), float("-inf")) # not sure about this # attention_mask = (context != 0).any(dim=2).to(dtype=x.dtype) pe = precompute_freqs_cis(indices_grid, dim=self.inner_dim, out_dtype=x.dtype) batch_size = x.shape[0] timestep, embedded_timestep = self.adaln_single( timestep.flatten(), {"resolution": None, "aspect_ratio": None}, batch_size=batch_size, hidden_dtype=x.dtype, ) # Second dimension is 1 or number of tokens (if timestep_per_token) timestep = timestep.view(batch_size, -1, timestep.shape[-1]) embedded_timestep = embedded_timestep.view( batch_size, -1, embedded_timestep.shape[-1] ) # 2. Blocks if self.caption_projection is not None: batch_size = x.shape[0] context = self.caption_projection(context) context = context.view( batch_size, -1, x.shape[-1] ) for block in self.transformer_blocks: x = block( x, context=context, attention_mask=attention_mask, timestep=timestep, pe=pe ) # 3. Output scale_shift_values = ( self.scale_shift_table[None, None].to(device=x.device, dtype=x.dtype) + embedded_timestep[:, :, None] ) shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1] x = self.norm_out(x) # Modulation x = x * (1 + scale) + shift x = self.proj_out(x) x = self.patchifier.unpatchify( latents=x, output_height=orig_shape[3], output_width=orig_shape[4], output_num_frames=orig_shape[2], out_channels=orig_shape[1] // math.prod(self.patchifier.patch_size), ) if guiding_latent is not None: x[:, :, 0] = (input_x[:, :, 0] - guiding_latent[:, :, 0]) / input_ts[:, :, 0] # print("res", x) return x