import os from comfy_extras.chainner_models import model_loading from comfy import model_management import torch import comfy.utils import folder_paths from tqdm.auto import tqdm class UpscaleModelLoader: @classmethod def INPUT_TYPES(s): return {"required": { "model_name": (folder_paths.get_filename_list("upscale_models"), ), }} RETURN_TYPES = ("UPSCALE_MODEL",) FUNCTION = "load_model" CATEGORY = "loaders" def load_model(self, model_name): model_path = folder_paths.get_full_path("upscale_models", model_name) sd = comfy.utils.load_torch_file(model_path) out = model_loading.load_state_dict(sd).eval() return (out, ) class ImageUpscaleWithModel: @classmethod def INPUT_TYPES(s): return {"required": { "upscale_model": ("UPSCALE_MODEL",), "image": ("IMAGE",), }} RETURN_TYPES = ("IMAGE",) FUNCTION = "upscale" CATEGORY = "image/upscaling" def upscale(self, upscale_model, image): device = model_management.get_torch_device() upscale_model.to(device) in_img = image.movedim(-1,-3).to(device) tile = 128 + 64 overlap = 8 steps = -(in_img.shape[2] // -(tile - overlap)) * -(in_img.shape[3] // -(tile - overlap)) pbar = comfy.utils.ProgressBar(steps) s = comfy.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=tile, tile_y=tile, overlap=overlap, upscale_amount=upscale_model.scale, pbar=pbar) upscale_model.cpu() s = torch.clamp(s.movedim(-3,-1), min=0, max=1.0) return (s,) NODE_CLASS_MAPPINGS = { "UpscaleModelLoader": UpscaleModelLoader, "ImageUpscaleWithModel": ImageUpscaleWithModel }