import comfy.model_patcher import comfy.samplers import re class SkipLayerGuidanceDiT: ''' Enhance guidance towards detailed dtructure by having another set of CFG negative with skipped layers. Inspired by Perturbed Attention Guidance (https://arxiv.org/abs/2403.17377) Original experimental implementation for SD3 by Dango233@StabilityAI. ''' @classmethod def INPUT_TYPES(s): return {"required": {"model": ("MODEL", ), "double_layers": ("STRING", {"default": "7, 8, 9", "multiline": False}), "single_layers": ("STRING", {"default": "7, 8, 9", "multiline": False}), "scale": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 10.0, "step": 0.1}), "start_percent": ("FLOAT", {"default": 0.01, "min": 0.0, "max": 1.0, "step": 0.001}), "end_percent": ("FLOAT", {"default": 0.15, "min": 0.0, "max": 1.0, "step": 0.001}), "rescaling_scale": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.01}), }} RETURN_TYPES = ("MODEL",) FUNCTION = "skip_guidance" EXPERIMENTAL = True DESCRIPTION = "Generic version of SkipLayerGuidance node that can be used on every DiT model." CATEGORY = "advanced/guidance" def skip_guidance(self, model, scale, start_percent, end_percent, double_layers="", single_layers="", rescaling_scale=0): # check if layer is comma separated integers def skip(args, extra_args): return args model_sampling = model.get_model_object("model_sampling") sigma_start = model_sampling.percent_to_sigma(start_percent) sigma_end = model_sampling.percent_to_sigma(end_percent) double_layers = re.findall(r'\d+', double_layers) double_layers = [int(i) for i in double_layers] single_layers = re.findall(r'\d+', single_layers) single_layers = [int(i) for i in single_layers] if len(double_layers) == 0 and len(single_layers) == 0: return (model, ) def post_cfg_function(args): model = args["model"] cond_pred = args["cond_denoised"] cond = args["cond"] cfg_result = args["denoised"] sigma = args["sigma"] x = args["input"] model_options = args["model_options"].copy() for layer in double_layers: model_options = comfy.model_patcher.set_model_options_patch_replace(model_options, skip, "dit", "double_block", layer) for layer in single_layers: model_options = comfy.model_patcher.set_model_options_patch_replace(model_options, skip, "dit", "single_block", layer) model_sampling.percent_to_sigma(start_percent) sigma_ = sigma[0].item() if scale > 0 and sigma_ >= sigma_end and sigma_ <= sigma_start: (slg,) = comfy.samplers.calc_cond_batch(model, [cond], x, sigma, model_options) cfg_result = cfg_result + (cond_pred - slg) * scale if rescaling_scale != 0: factor = cond_pred.std() / cfg_result.std() factor = rescaling_scale * factor + (1 - rescaling_scale) cfg_result *= factor return cfg_result m = model.clone() m.set_model_sampler_post_cfg_function(post_cfg_function) return (m, ) NODE_CLASS_MAPPINGS = { "SkipLayerGuidanceDiT": SkipLayerGuidanceDiT, }