import torch import contextlib import copy import sd1_clip import sd2_clip from comfy import model_management from .ldm.util import instantiate_from_config from .ldm.models.autoencoder import AutoencoderKL import yaml from .cldm import cldm from .t2i_adapter import adapter from . import utils from . import clip_vision from . import gligen def load_model_weights(model, sd, verbose=False, load_state_dict_to=[]): m, u = model.load_state_dict(sd, strict=False) k = list(sd.keys()) for x in k: # print(x) if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."): y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.") sd[y] = sd.pop(x) if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd: ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] if ids.dtype == torch.float32: sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round() keys_to_replace = { "cond_stage_model.model.positional_embedding": "cond_stage_model.transformer.text_model.embeddings.position_embedding.weight", "cond_stage_model.model.token_embedding.weight": "cond_stage_model.transformer.text_model.embeddings.token_embedding.weight", "cond_stage_model.model.ln_final.weight": "cond_stage_model.transformer.text_model.final_layer_norm.weight", "cond_stage_model.model.ln_final.bias": "cond_stage_model.transformer.text_model.final_layer_norm.bias", } for x in keys_to_replace: if x in sd: sd[keys_to_replace[x]] = sd.pop(x) sd = utils.transformers_convert(sd, "cond_stage_model.model", "cond_stage_model.transformer.text_model", 24) for x in load_state_dict_to: x.load_state_dict(sd, strict=False) if len(m) > 0 and verbose: print("missing keys:") print(m) if len(u) > 0 and verbose: print("unexpected keys:") print(u) model.eval() return model LORA_CLIP_MAP = { "mlp.fc1": "mlp_fc1", "mlp.fc2": "mlp_fc2", "self_attn.k_proj": "self_attn_k_proj", "self_attn.q_proj": "self_attn_q_proj", "self_attn.v_proj": "self_attn_v_proj", "self_attn.out_proj": "self_attn_out_proj", } LORA_UNET_MAP_ATTENTIONS = { "proj_in": "proj_in", "proj_out": "proj_out", "transformer_blocks.0.attn1.to_q": "transformer_blocks_0_attn1_to_q", "transformer_blocks.0.attn1.to_k": "transformer_blocks_0_attn1_to_k", "transformer_blocks.0.attn1.to_v": "transformer_blocks_0_attn1_to_v", "transformer_blocks.0.attn1.to_out.0": "transformer_blocks_0_attn1_to_out_0", "transformer_blocks.0.attn2.to_q": "transformer_blocks_0_attn2_to_q", "transformer_blocks.0.attn2.to_k": "transformer_blocks_0_attn2_to_k", "transformer_blocks.0.attn2.to_v": "transformer_blocks_0_attn2_to_v", "transformer_blocks.0.attn2.to_out.0": "transformer_blocks_0_attn2_to_out_0", "transformer_blocks.0.ff.net.0.proj": "transformer_blocks_0_ff_net_0_proj", "transformer_blocks.0.ff.net.2": "transformer_blocks_0_ff_net_2", } LORA_UNET_MAP_RESNET = { "in_layers.2": "resnets_{}_conv1", "emb_layers.1": "resnets_{}_time_emb_proj", "out_layers.3": "resnets_{}_conv2", "skip_connection": "resnets_{}_conv_shortcut" } def load_lora(path, to_load): lora = utils.load_torch_file(path) patch_dict = {} loaded_keys = set() for x in to_load: alpha_name = "{}.alpha".format(x) alpha = None if alpha_name in lora.keys(): alpha = lora[alpha_name].item() loaded_keys.add(alpha_name) A_name = "{}.lora_up.weight".format(x) B_name = "{}.lora_down.weight".format(x) mid_name = "{}.lora_mid.weight".format(x) if A_name in lora.keys(): mid = None if mid_name in lora.keys(): mid = lora[mid_name] loaded_keys.add(mid_name) patch_dict[to_load[x]] = (lora[A_name], lora[B_name], alpha, mid) loaded_keys.add(A_name) loaded_keys.add(B_name) ######## loha hada_w1_a_name = "{}.hada_w1_a".format(x) hada_w1_b_name = "{}.hada_w1_b".format(x) hada_w2_a_name = "{}.hada_w2_a".format(x) hada_w2_b_name = "{}.hada_w2_b".format(x) hada_t1_name = "{}.hada_t1".format(x) hada_t2_name = "{}.hada_t2".format(x) if hada_w1_a_name in lora.keys(): hada_t1 = None hada_t2 = None if hada_t1_name in lora.keys(): hada_t1 = lora[hada_t1_name] hada_t2 = lora[hada_t2_name] loaded_keys.add(hada_t1_name) loaded_keys.add(hada_t2_name) patch_dict[to_load[x]] = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2) loaded_keys.add(hada_w1_a_name) loaded_keys.add(hada_w1_b_name) loaded_keys.add(hada_w2_a_name) loaded_keys.add(hada_w2_b_name) ######## lokr lokr_w1_name = "{}.lokr_w1".format(x) lokr_w2_name = "{}.lokr_w2".format(x) lokr_w1_a_name = "{}.lokr_w1_a".format(x) lokr_w1_b_name = "{}.lokr_w1_b".format(x) lokr_t2_name = "{}.lokr_t2".format(x) lokr_w2_a_name = "{}.lokr_w2_a".format(x) lokr_w2_b_name = "{}.lokr_w2_b".format(x) lokr_w1 = None if lokr_w1_name in lora.keys(): lokr_w1 = lora[lokr_w1_name] loaded_keys.add(lokr_w1_name) lokr_w2 = None if lokr_w2_name in lora.keys(): lokr_w2 = lora[lokr_w2_name] loaded_keys.add(lokr_w2_name) lokr_w1_a = None if lokr_w1_a_name in lora.keys(): lokr_w1_a = lora[lokr_w1_a_name] loaded_keys.add(lokr_w1_a_name) lokr_w1_b = None if lokr_w1_b_name in lora.keys(): lokr_w1_b = lora[lokr_w1_b_name] loaded_keys.add(lokr_w1_b_name) lokr_w2_a = None if lokr_w2_a_name in lora.keys(): lokr_w2_a = lora[lokr_w2_a_name] loaded_keys.add(lokr_w2_a_name) lokr_w2_b = None if lokr_w2_b_name in lora.keys(): lokr_w2_b = lora[lokr_w2_b_name] loaded_keys.add(lokr_w2_b_name) lokr_t2 = None if lokr_t2_name in lora.keys(): lokr_t2 = lora[lokr_t2_name] loaded_keys.add(lokr_t2_name) if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None): patch_dict[to_load[x]] = (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2) for x in lora.keys(): if x not in loaded_keys: print("lora key not loaded", x) return patch_dict def model_lora_keys(model, key_map={}): sdk = model.state_dict().keys() counter = 0 for b in range(12): tk = "model.diffusion_model.input_blocks.{}.1".format(b) up_counter = 0 for c in LORA_UNET_MAP_ATTENTIONS: k = "{}.{}.weight".format(tk, c) if k in sdk: lora_key = "lora_unet_down_blocks_{}_attentions_{}_{}".format(counter // 2, counter % 2, LORA_UNET_MAP_ATTENTIONS[c]) key_map[lora_key] = k up_counter += 1 if up_counter >= 4: counter += 1 for c in LORA_UNET_MAP_ATTENTIONS: k = "model.diffusion_model.middle_block.1.{}.weight".format(c) if k in sdk: lora_key = "lora_unet_mid_block_attentions_0_{}".format(LORA_UNET_MAP_ATTENTIONS[c]) key_map[lora_key] = k counter = 3 for b in range(12): tk = "model.diffusion_model.output_blocks.{}.1".format(b) up_counter = 0 for c in LORA_UNET_MAP_ATTENTIONS: k = "{}.{}.weight".format(tk, c) if k in sdk: lora_key = "lora_unet_up_blocks_{}_attentions_{}_{}".format(counter // 3, counter % 3, LORA_UNET_MAP_ATTENTIONS[c]) key_map[lora_key] = k up_counter += 1 if up_counter >= 4: counter += 1 counter = 0 text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}" for b in range(24): for c in LORA_CLIP_MAP: k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c) if k in sdk: lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c]) key_map[lora_key] = k #Locon stuff ds_counter = 0 counter = 0 for b in range(12): tk = "model.diffusion_model.input_blocks.{}.0".format(b) key_in = False for c in LORA_UNET_MAP_RESNET: k = "{}.{}.weight".format(tk, c) if k in sdk: lora_key = "lora_unet_down_blocks_{}_{}".format(counter // 2, LORA_UNET_MAP_RESNET[c].format(counter % 2)) key_map[lora_key] = k key_in = True for bb in range(3): k = "{}.{}.op.weight".format(tk[:-2], bb) if k in sdk: lora_key = "lora_unet_down_blocks_{}_downsamplers_0_conv".format(ds_counter) key_map[lora_key] = k ds_counter += 1 if key_in: counter += 1 counter = 0 for b in range(3): tk = "model.diffusion_model.middle_block.{}".format(b) key_in = False for c in LORA_UNET_MAP_RESNET: k = "{}.{}.weight".format(tk, c) if k in sdk: lora_key = "lora_unet_mid_block_{}".format(LORA_UNET_MAP_RESNET[c].format(counter)) key_map[lora_key] = k key_in = True if key_in: counter += 1 counter = 0 us_counter = 0 for b in range(12): tk = "model.diffusion_model.output_blocks.{}.0".format(b) key_in = False for c in LORA_UNET_MAP_RESNET: k = "{}.{}.weight".format(tk, c) if k in sdk: lora_key = "lora_unet_up_blocks_{}_{}".format(counter // 3, LORA_UNET_MAP_RESNET[c].format(counter % 3)) key_map[lora_key] = k key_in = True for bb in range(3): k = "{}.{}.conv.weight".format(tk[:-2], bb) if k in sdk: lora_key = "lora_unet_up_blocks_{}_upsamplers_0_conv".format(us_counter) key_map[lora_key] = k us_counter += 1 if key_in: counter += 1 return key_map class ModelPatcher: def __init__(self, model): self.model = model self.patches = [] self.backup = {} self.model_options = {"transformer_options":{}} def clone(self): n = ModelPatcher(self.model) n.patches = self.patches[:] n.model_options = copy.deepcopy(self.model_options) return n def set_model_tomesd(self, ratio): self.model_options["transformer_options"]["tomesd"] = {"ratio": ratio} def set_model_sampler_cfg_function(self, sampler_cfg_function): self.model_options["sampler_cfg_function"] = sampler_cfg_function def set_model_patch(self, patch, name): to = self.model_options["transformer_options"] if "patches" not in to: to["patches"] = {} to["patches"][name] = to["patches"].get(name, []) + [patch] def set_model_attn1_patch(self, patch): self.set_model_patch(patch, "attn1_patch") def set_model_attn2_patch(self, patch): self.set_model_patch(patch, "attn2_patch") def model_patches_to(self, device): to = self.model_options["transformer_options"] if "patches" in to: patches = to["patches"] for name in patches: patch_list = patches[name] for i in range(len(patch_list)): if hasattr(patch_list[i], "to"): patch_list[i] = patch_list[i].to(device) def model_dtype(self): return self.model.diffusion_model.dtype def add_patches(self, patches, strength=1.0): p = {} model_sd = self.model.state_dict() for k in patches: if k in model_sd: p[k] = patches[k] self.patches += [(strength, p)] return p.keys() def patch_model(self): model_sd = self.model.state_dict() for p in self.patches: for k in p[1]: v = p[1][k] key = k if key not in model_sd: print("could not patch. key doesn't exist in model:", k) continue weight = model_sd[key] if key not in self.backup: self.backup[key] = weight.clone() alpha = p[0] if len(v) == 4: #lora/locon mat1 = v[0] mat2 = v[1] if v[2] is not None: alpha *= v[2] / mat2.shape[0] if v[3] is not None: #locon mid weights, hopefully the math is fine because I didn't properly test it final_shape = [mat2.shape[1], mat2.shape[0], v[3].shape[2], v[3].shape[3]] mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1).float(), v[3].transpose(0, 1).flatten(start_dim=1).float()).reshape(final_shape).transpose(0, 1) weight += (alpha * torch.mm(mat1.flatten(start_dim=1).float(), mat2.flatten(start_dim=1).float())).reshape(weight.shape).type(weight.dtype).to(weight.device) elif len(v) == 8: #lokr w1 = v[0] w2 = v[1] w1_a = v[3] w1_b = v[4] w2_a = v[5] w2_b = v[6] t2 = v[7] dim = None if w1 is None: dim = w1_b.shape[0] w1 = torch.mm(w1_a.float(), w1_b.float()) if w2 is None: dim = w2_b.shape[0] if t2 is None: w2 = torch.mm(w2_a.float(), w2_b.float()) else: w2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2_b.float(), w2_a.float()) if len(w2.shape) == 4: w1 = w1.unsqueeze(2).unsqueeze(2) if v[2] is not None and dim is not None: alpha *= v[2] / dim weight += alpha * torch.kron(w1.float(), w2.float()).reshape(weight.shape).type(weight.dtype).to(weight.device) else: #loha w1a = v[0] w1b = v[1] if v[2] is not None: alpha *= v[2] / w1b.shape[0] w2a = v[3] w2b = v[4] if v[5] is not None: #cp decomposition t1 = v[5] t2 = v[6] m1 = torch.einsum('i j k l, j r, i p -> p r k l', t1.float(), w1b.float(), w1a.float()) m2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2b.float(), w2a.float()) else: m1 = torch.mm(w1a.float(), w1b.float()) m2 = torch.mm(w2a.float(), w2b.float()) weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype).to(weight.device) return self.model def unpatch_model(self): model_sd = self.model.state_dict() keys = list(self.backup.keys()) for k in keys: model_sd[k][:] = self.backup[k] del self.backup[k] self.backup = {} def load_lora_for_models(model, clip, lora_path, strength_model, strength_clip): key_map = model_lora_keys(model.model) key_map = model_lora_keys(clip.cond_stage_model, key_map) loaded = load_lora(lora_path, key_map) new_modelpatcher = model.clone() k = new_modelpatcher.add_patches(loaded, strength_model) new_clip = clip.clone() k1 = new_clip.add_patches(loaded, strength_clip) k = set(k) k1 = set(k1) for x in loaded: if (x not in k) and (x not in k1): print("NOT LOADED", x) return (new_modelpatcher, new_clip) class CLIP: def __init__(self, config={}, embedding_directory=None, no_init=False): if no_init: return self.target_clip = config["target"] if "params" in config: params = config["params"] else: params = {} if self.target_clip == "ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder": clip = sd2_clip.SD2ClipModel tokenizer = sd2_clip.SD2Tokenizer elif self.target_clip == "ldm.modules.encoders.modules.FrozenCLIPEmbedder": clip = sd1_clip.SD1ClipModel tokenizer = sd1_clip.SD1Tokenizer self.cond_stage_model = clip(**(params)) self.tokenizer = tokenizer(embedding_directory=embedding_directory) self.patcher = ModelPatcher(self.cond_stage_model) self.layer_idx = None def clone(self): n = CLIP(no_init=True) n.target_clip = self.target_clip n.patcher = self.patcher.clone() n.cond_stage_model = self.cond_stage_model n.tokenizer = self.tokenizer n.layer_idx = self.layer_idx return n def load_from_state_dict(self, sd): self.cond_stage_model.transformer.load_state_dict(sd, strict=False) def add_patches(self, patches, strength=1.0): return self.patcher.add_patches(patches, strength) def clip_layer(self, layer_idx): self.layer_idx = layer_idx def tokenize(self, text, return_word_ids=False): return self.tokenizer.tokenize_with_weights(text, return_word_ids) def encode_from_tokens(self, tokens, return_pooled=False): if self.layer_idx is not None: self.cond_stage_model.clip_layer(self.layer_idx) try: self.patcher.patch_model() cond = self.cond_stage_model.encode_token_weights(tokens) self.patcher.unpatch_model() except Exception as e: self.patcher.unpatch_model() raise e if return_pooled: eos_token_index = max(range(len(tokens[0])), key=tokens[0].__getitem__) pooled = cond[:, eos_token_index] return cond, pooled return cond def encode(self, text): tokens = self.tokenize(text) return self.encode_from_tokens(tokens) class VAE: def __init__(self, ckpt_path=None, scale_factor=0.18215, device=None, config=None): if config is None: #default SD1.x/SD2.x VAE parameters ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0} self.first_stage_model = AutoencoderKL(ddconfig, {'target': 'torch.nn.Identity'}, 4, monitor="val/rec_loss", ckpt_path=ckpt_path) else: self.first_stage_model = AutoencoderKL(**(config['params']), ckpt_path=ckpt_path) self.first_stage_model = self.first_stage_model.eval() self.scale_factor = scale_factor if device is None: device = model_management.get_torch_device() self.device = device def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16): decode_fn = lambda a: (self.first_stage_model.decode(1. / self.scale_factor * a.to(self.device)) + 1.0) output = torch.clamp(( (utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8) + utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8) + utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8)) / 3.0) / 2.0, min=0.0, max=1.0) return output def decode(self, samples_in): model_management.unload_model() self.first_stage_model = self.first_stage_model.to(self.device) try: free_memory = model_management.get_free_memory(self.device) batch_number = int((free_memory * 0.7) / (2562 * samples_in.shape[2] * samples_in.shape[3] * 64)) batch_number = max(1, batch_number) pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * 8), round(samples_in.shape[3] * 8)), device="cpu") for x in range(0, samples_in.shape[0], batch_number): samples = samples_in[x:x+batch_number].to(self.device) pixel_samples[x:x+batch_number] = torch.clamp((self.first_stage_model.decode(1. / self.scale_factor * samples) + 1.0) / 2.0, min=0.0, max=1.0).cpu() except model_management.OOM_EXCEPTION as e: print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.") pixel_samples = self.decode_tiled_(samples_in) self.first_stage_model = self.first_stage_model.cpu() pixel_samples = pixel_samples.cpu().movedim(1,-1) return pixel_samples def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16): model_management.unload_model() self.first_stage_model = self.first_stage_model.to(self.device) output = self.decode_tiled_(samples, tile_x, tile_y, overlap) self.first_stage_model = self.first_stage_model.cpu() return output.movedim(1,-1) def encode(self, pixel_samples): model_management.unload_model() self.first_stage_model = self.first_stage_model.to(self.device) pixel_samples = pixel_samples.movedim(-1,1).to(self.device) samples = self.first_stage_model.encode(2. * pixel_samples - 1.).sample() * self.scale_factor self.first_stage_model = self.first_stage_model.cpu() samples = samples.cpu() return samples def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64): model_management.unload_model() self.first_stage_model = self.first_stage_model.to(self.device) pixel_samples = pixel_samples.movedim(-1,1).to(self.device) samples = utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4) samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4) samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4) samples /= 3.0 self.first_stage_model = self.first_stage_model.cpu() samples = samples.cpu() return samples def resize_image_to(tensor, target_latent_tensor, batched_number): tensor = utils.common_upscale(tensor, target_latent_tensor.shape[3] * 8, target_latent_tensor.shape[2] * 8, 'nearest-exact', "center") target_batch_size = target_latent_tensor.shape[0] current_batch_size = tensor.shape[0] print(current_batch_size, target_batch_size) if current_batch_size == 1: return tensor per_batch = target_batch_size // batched_number tensor = tensor[:per_batch] if per_batch > tensor.shape[0]: tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0) current_batch_size = tensor.shape[0] if current_batch_size == target_batch_size: return tensor else: return torch.cat([tensor] * batched_number, dim=0) class ControlNet: def __init__(self, control_model, device=None): self.control_model = control_model self.cond_hint_original = None self.cond_hint = None self.strength = 1.0 if device is None: device = model_management.get_torch_device() self.device = device self.previous_controlnet = None def get_control(self, x_noisy, t, cond_txt, batched_number): control_prev = None if self.previous_controlnet is not None: control_prev = self.previous_controlnet.get_control(x_noisy, t, cond_txt, batched_number) output_dtype = x_noisy.dtype if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]: if self.cond_hint is not None: del self.cond_hint self.cond_hint = None self.cond_hint = resize_image_to(self.cond_hint_original, x_noisy, batched_number).to(self.control_model.dtype).to(self.device) if self.control_model.dtype == torch.float16: precision_scope = torch.autocast else: precision_scope = contextlib.nullcontext with precision_scope(model_management.get_autocast_device(self.device)): self.control_model = model_management.load_if_low_vram(self.control_model) control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=cond_txt) self.control_model = model_management.unload_if_low_vram(self.control_model) out = {'middle':[], 'output': []} autocast_enabled = torch.is_autocast_enabled() for i in range(len(control)): if i == (len(control) - 1): key = 'middle' index = 0 else: key = 'output' index = i x = control[i] x *= self.strength if x.dtype != output_dtype and not autocast_enabled: x = x.to(output_dtype) if control_prev is not None and key in control_prev: prev = control_prev[key][index] if prev is not None: x += prev out[key].append(x) if control_prev is not None and 'input' in control_prev: out['input'] = control_prev['input'] return out def set_cond_hint(self, cond_hint, strength=1.0): self.cond_hint_original = cond_hint self.strength = strength return self def set_previous_controlnet(self, controlnet): self.previous_controlnet = controlnet return self def cleanup(self): if self.previous_controlnet is not None: self.previous_controlnet.cleanup() if self.cond_hint is not None: del self.cond_hint self.cond_hint = None def copy(self): c = ControlNet(self.control_model) c.cond_hint_original = self.cond_hint_original c.strength = self.strength return c def get_models(self): out = [] if self.previous_controlnet is not None: out += self.previous_controlnet.get_models() out.append(self.control_model) return out def load_controlnet(ckpt_path, model=None): controlnet_data = utils.load_torch_file(ckpt_path) pth_key = 'control_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight' pth = False sd2 = False key = 'input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight' if pth_key in controlnet_data: pth = True key = pth_key elif key in controlnet_data: pass else: net = load_t2i_adapter(controlnet_data) if net is None: print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path) return net context_dim = controlnet_data[key].shape[1] use_fp16 = False if model_management.should_use_fp16() and controlnet_data[key].dtype == torch.float16: use_fp16 = True if context_dim == 768: #SD1.x control_model = cldm.ControlNet(image_size=32, in_channels=4, hint_channels=3, model_channels=320, attention_resolutions=[ 4, 2, 1 ], num_res_blocks=2, channel_mult=[ 1, 2, 4, 4 ], num_heads=8, use_spatial_transformer=True, transformer_depth=1, context_dim=context_dim, use_checkpoint=True, legacy=False, use_fp16=use_fp16) else: #SD2.x control_model = cldm.ControlNet(image_size=32, in_channels=4, hint_channels=3, model_channels=320, attention_resolutions=[ 4, 2, 1 ], num_res_blocks=2, channel_mult=[ 1, 2, 4, 4 ], num_head_channels=64, use_spatial_transformer=True, use_linear_in_transformer=True, transformer_depth=1, context_dim=context_dim, use_checkpoint=True, legacy=False, use_fp16=use_fp16) if pth: if 'difference' in controlnet_data: if model is not None: m = model.patch_model() model_sd = m.state_dict() for x in controlnet_data: c_m = "control_model." if x.startswith(c_m): sd_key = "model.diffusion_model.{}".format(x[len(c_m):]) if sd_key in model_sd: cd = controlnet_data[x] cd += model_sd[sd_key].type(cd.dtype).to(cd.device) model.unpatch_model() else: print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.") class WeightsLoader(torch.nn.Module): pass w = WeightsLoader() w.control_model = control_model w.load_state_dict(controlnet_data, strict=False) else: control_model.load_state_dict(controlnet_data, strict=False) if use_fp16: control_model = control_model.half() control = ControlNet(control_model) return control class T2IAdapter: def __init__(self, t2i_model, channels_in, device=None): self.t2i_model = t2i_model self.channels_in = channels_in self.strength = 1.0 if device is None: device = model_management.get_torch_device() self.device = device self.previous_controlnet = None self.control_input = None self.cond_hint_original = None self.cond_hint = None def get_control(self, x_noisy, t, cond_txt, batched_number): control_prev = None if self.previous_controlnet is not None: control_prev = self.previous_controlnet.get_control(x_noisy, t, cond_txt, batched_number) if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]: if self.cond_hint is not None: del self.cond_hint self.cond_hint = None self.cond_hint = resize_image_to(self.cond_hint_original, x_noisy, batched_number).float().to(self.device) if self.channels_in == 1 and self.cond_hint.shape[1] > 1: self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True) self.t2i_model.to(self.device) self.control_input = self.t2i_model(self.cond_hint) self.t2i_model.cpu() output_dtype = x_noisy.dtype out = {'input':[]} autocast_enabled = torch.is_autocast_enabled() for i in range(len(self.control_input)): key = 'input' x = self.control_input[i] * self.strength if x.dtype != output_dtype and not autocast_enabled: x = x.to(output_dtype) if control_prev is not None and key in control_prev: index = len(control_prev[key]) - i * 3 - 3 prev = control_prev[key][index] if prev is not None: x += prev out[key].insert(0, None) out[key].insert(0, None) out[key].insert(0, x) if control_prev is not None and 'input' in control_prev: for i in range(len(out['input'])): if out['input'][i] is None: out['input'][i] = control_prev['input'][i] if control_prev is not None and 'middle' in control_prev: out['middle'] = control_prev['middle'] if control_prev is not None and 'output' in control_prev: out['output'] = control_prev['output'] return out def set_cond_hint(self, cond_hint, strength=1.0): self.cond_hint_original = cond_hint self.strength = strength return self def set_previous_controlnet(self, controlnet): self.previous_controlnet = controlnet return self def copy(self): c = T2IAdapter(self.t2i_model, self.channels_in) c.cond_hint_original = self.cond_hint_original c.strength = self.strength return c def cleanup(self): if self.previous_controlnet is not None: self.previous_controlnet.cleanup() if self.cond_hint is not None: del self.cond_hint self.cond_hint = None def get_models(self): out = [] if self.previous_controlnet is not None: out += self.previous_controlnet.get_models() return out def load_t2i_adapter(t2i_data): keys = t2i_data.keys() if "body.0.in_conv.weight" in keys: cin = t2i_data['body.0.in_conv.weight'].shape[1] model_ad = adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4) elif 'conv_in.weight' in keys: cin = t2i_data['conv_in.weight'].shape[1] model_ad = adapter.Adapter(cin=cin, channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True, use_conv=False) else: return None model_ad.load_state_dict(t2i_data) return T2IAdapter(model_ad, cin // 64) class StyleModel: def __init__(self, model, device="cpu"): self.model = model def get_cond(self, input): return self.model(input.last_hidden_state) def load_style_model(ckpt_path): model_data = utils.load_torch_file(ckpt_path) keys = model_data.keys() if "style_embedding" in keys: model = adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8) else: raise Exception("invalid style model {}".format(ckpt_path)) model.load_state_dict(model_data) return StyleModel(model) def load_clip(ckpt_path, embedding_directory=None): clip_data = utils.load_torch_file(ckpt_path) config = {} if "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data: config['target'] = 'ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder' else: config['target'] = 'ldm.modules.encoders.modules.FrozenCLIPEmbedder' clip = CLIP(config=config, embedding_directory=embedding_directory) clip.load_from_state_dict(clip_data) return clip def load_gligen(ckpt_path): data = utils.load_torch_file(ckpt_path) model = gligen.load_gligen(data) if model_management.should_use_fp16(): model = model.half() return model def load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=None): with open(config_path, 'r') as stream: config = yaml.safe_load(stream) model_config_params = config['model']['params'] clip_config = model_config_params['cond_stage_config'] scale_factor = model_config_params['scale_factor'] vae_config = model_config_params['first_stage_config'] fp16 = False if "unet_config" in model_config_params: if "params" in model_config_params["unet_config"]: if "use_fp16" in model_config_params["unet_config"]["params"]: fp16 = model_config_params["unet_config"]["params"]["use_fp16"] clip = None vae = None class WeightsLoader(torch.nn.Module): pass w = WeightsLoader() load_state_dict_to = [] if output_vae: vae = VAE(scale_factor=scale_factor, config=vae_config) w.first_stage_model = vae.first_stage_model load_state_dict_to = [w] if output_clip: clip = CLIP(config=clip_config, embedding_directory=embedding_directory) w.cond_stage_model = clip.cond_stage_model load_state_dict_to = [w] model = instantiate_from_config(config["model"]) sd = utils.load_torch_file(ckpt_path) model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to) if fp16: model = model.half() return (ModelPatcher(model), clip, vae) def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None): sd = utils.load_torch_file(ckpt_path) sd_keys = sd.keys() clip = None clipvision = None vae = None fp16 = model_management.should_use_fp16() class WeightsLoader(torch.nn.Module): pass w = WeightsLoader() load_state_dict_to = [] if output_vae: vae = VAE() w.first_stage_model = vae.first_stage_model load_state_dict_to = [w] if output_clip: clip_config = {} if "cond_stage_model.model.transformer.resblocks.22.attn.out_proj.weight" in sd_keys: clip_config['target'] = 'ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder' else: clip_config['target'] = 'ldm.modules.encoders.modules.FrozenCLIPEmbedder' clip = CLIP(config=clip_config, embedding_directory=embedding_directory) w.cond_stage_model = clip.cond_stage_model load_state_dict_to = [w] clipvision_key = "embedder.model.visual.transformer.resblocks.0.attn.in_proj_weight" noise_aug_config = None if clipvision_key in sd_keys: size = sd[clipvision_key].shape[1] if output_clipvision: clipvision = clip_vision.load_clipvision_from_sd(sd) noise_aug_key = "noise_augmentor.betas" if noise_aug_key in sd_keys: noise_aug_config = {} params = {} noise_schedule_config = {} noise_schedule_config["timesteps"] = sd[noise_aug_key].shape[0] noise_schedule_config["beta_schedule"] = "squaredcos_cap_v2" params["noise_schedule_config"] = noise_schedule_config noise_aug_config['target'] = "ldm.modules.encoders.noise_aug_modules.CLIPEmbeddingNoiseAugmentation" if size == 1280: #h params["timestep_dim"] = 1024 elif size == 1024: #l params["timestep_dim"] = 768 noise_aug_config['params'] = params sd_config = { "linear_start": 0.00085, "linear_end": 0.012, "num_timesteps_cond": 1, "log_every_t": 200, "timesteps": 1000, "first_stage_key": "jpg", "cond_stage_key": "txt", "image_size": 64, "channels": 4, "cond_stage_trainable": False, "monitor": "val/loss_simple_ema", "scale_factor": 0.18215, "use_ema": False, } unet_config = { "use_checkpoint": True, "image_size": 32, "out_channels": 4, "attention_resolutions": [ 4, 2, 1 ], "num_res_blocks": 2, "channel_mult": [ 1, 2, 4, 4 ], "use_spatial_transformer": True, "transformer_depth": 1, "legacy": False } if len(sd['model.diffusion_model.input_blocks.1.1.proj_in.weight'].shape) == 2: unet_config['use_linear_in_transformer'] = True unet_config["use_fp16"] = fp16 unet_config["model_channels"] = sd['model.diffusion_model.input_blocks.0.0.weight'].shape[0] unet_config["in_channels"] = sd['model.diffusion_model.input_blocks.0.0.weight'].shape[1] unet_config["context_dim"] = sd['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'].shape[1] sd_config["unet_config"] = {"target": "ldm.modules.diffusionmodules.openaimodel.UNetModel", "params": unet_config} model_config = {"target": "ldm.models.diffusion.ddpm.LatentDiffusion", "params": sd_config} if noise_aug_config is not None: #SD2.x unclip model sd_config["noise_aug_config"] = noise_aug_config sd_config["image_size"] = 96 sd_config["embedding_dropout"] = 0.25 sd_config["conditioning_key"] = 'crossattn-adm' model_config["target"] = "ldm.models.diffusion.ddpm.ImageEmbeddingConditionedLatentDiffusion" elif unet_config["in_channels"] > 4: #inpainting model sd_config["conditioning_key"] = "hybrid" sd_config["finetune_keys"] = None model_config["target"] = "ldm.models.diffusion.ddpm.LatentInpaintDiffusion" else: sd_config["conditioning_key"] = "crossattn" if unet_config["context_dim"] == 1024: unet_config["num_head_channels"] = 64 #SD2.x else: unet_config["num_heads"] = 8 #SD1.x unclip = 'model.diffusion_model.label_emb.0.0.weight' if unclip in sd_keys: unet_config["num_classes"] = "sequential" unet_config["adm_in_channels"] = sd[unclip].shape[1] if unet_config["context_dim"] == 1024 and unet_config["in_channels"] == 4: #only SD2.x non inpainting models are v prediction k = "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.bias" out = sd[k] if torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out. sd_config["parameterization"] = 'v' model = instantiate_from_config(model_config) model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to) if fp16: model = model.half() return (ModelPatcher(model), clip, vae, clipvision)