from comfy import sd1_clip import comfy.model_management import comfy.text_encoders.llama from transformers import LlamaTokenizerFast import torch import os def llama_detect(state_dict, prefix=""): out = {} t5_key = "{}model.norm.weight".format(prefix) if t5_key in state_dict: out["dtype_llama"] = state_dict[t5_key].dtype scaled_fp8_key = "{}scaled_fp8".format(prefix) if scaled_fp8_key in state_dict: out["llama_scaled_fp8"] = state_dict[scaled_fp8_key].dtype return out class LLAMA3Tokenizer(sd1_clip.SDTokenizer): def __init__(self, embedding_directory=None, tokenizer_data={}, min_length=256): tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "llama_tokenizer") super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='llama', tokenizer_class=LlamaTokenizerFast, has_start_token=True, has_end_token=False, pad_to_max_length=False, max_length=99999999, pad_token=128258, end_token=128009, min_length=min_length) class LLAMAModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options={}): llama_scaled_fp8 = model_options.get("llama_scaled_fp8", None) if llama_scaled_fp8 is not None: model_options = model_options.copy() model_options["scaled_fp8"] = llama_scaled_fp8 super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 128000, "pad": 128258}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Llama2, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) class HunyuanVideoTokenizer: def __init__(self, embedding_directory=None, tokenizer_data={}): clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer) self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory) self.llama_template = """<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: 1. The main content and theme of the video.2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects.3. Actions, events, behaviors temporal relationships, physical movement changes of the objects.4. background environment, light, style and atmosphere.5. camera angles, movements, and transitions used in the video:<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n""" # 95 tokens self.llama = LLAMA3Tokenizer(embedding_directory=embedding_directory, min_length=1) def tokenize_with_weights(self, text:str, return_word_ids=False): out = {} out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids) llama_text = "{}{}".format(self.llama_template, text) out["llama"] = self.llama.tokenize_with_weights(llama_text, return_word_ids) return out def untokenize(self, token_weight_pair): return self.clip_l.untokenize(token_weight_pair) def state_dict(self): return {} class HunyuanVideoClipModel(torch.nn.Module): def __init__(self, dtype_llama=None, device="cpu", dtype=None, model_options={}): super().__init__() dtype_llama = comfy.model_management.pick_weight_dtype(dtype_llama, dtype, device) clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel) self.clip_l = clip_l_class(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options) self.llama = LLAMAModel(device=device, dtype=dtype_llama, model_options=model_options) self.dtypes = set([dtype, dtype_llama]) def set_clip_options(self, options): self.clip_l.set_clip_options(options) self.llama.set_clip_options(options) def reset_clip_options(self): self.clip_l.reset_clip_options() self.llama.reset_clip_options() def encode_token_weights(self, token_weight_pairs): token_weight_pairs_l = token_weight_pairs["l"] token_weight_pairs_llama = token_weight_pairs["llama"] llama_out, llama_pooled, llama_extra_out = self.llama.encode_token_weights(token_weight_pairs_llama) template_end = 0 for i, v in enumerate(token_weight_pairs_llama[0]): if v[0] == 128007: # <|end_header_id|> template_end = i if llama_out.shape[1] > (template_end + 2): if token_weight_pairs_llama[0][template_end + 1][0] == 271: template_end += 2 llama_out = llama_out[:, template_end:] llama_extra_out["attention_mask"] = llama_extra_out["attention_mask"][:, template_end:] if llama_extra_out["attention_mask"].sum() == torch.numel(llama_extra_out["attention_mask"]): llama_extra_out.pop("attention_mask") # attention mask is useless if no masked elements l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l) return llama_out, l_pooled, llama_extra_out def load_sd(self, sd): if "text_model.encoder.layers.1.mlp.fc1.weight" in sd: return self.clip_l.load_sd(sd) else: return self.llama.load_sd(sd) def hunyuan_video_clip(dtype_llama=None, llama_scaled_fp8=None): class HunyuanVideoClipModel_(HunyuanVideoClipModel): def __init__(self, device="cpu", dtype=None, model_options={}): if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options: model_options = model_options.copy() model_options["llama_scaled_fp8"] = llama_scaled_fp8 super().__init__(dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options) return HunyuanVideoClipModel_