import math from dataclasses import dataclass import torch from torch import Tensor, nn from .math import attention, rope import comfy.ops import comfy.ldm.common_dit class EmbedND(nn.Module): def __init__(self, dim: int, theta: int, axes_dim: list): super().__init__() self.dim = dim self.theta = theta self.axes_dim = axes_dim def forward(self, ids: Tensor) -> Tensor: n_axes = ids.shape[-1] emb = torch.cat( [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], dim=-3, ) return emb.unsqueeze(1) def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ t = time_factor * t half = dim // 2 freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half) args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) if torch.is_floating_point(t): embedding = embedding.to(t) return embedding class MLPEmbedder(nn.Module): def __init__(self, in_dim: int, hidden_dim: int, dtype=None, device=None, operations=None): super().__init__() self.in_layer = operations.Linear(in_dim, hidden_dim, bias=True, dtype=dtype, device=device) self.silu = nn.SiLU() self.out_layer = operations.Linear(hidden_dim, hidden_dim, bias=True, dtype=dtype, device=device) def forward(self, x: Tensor) -> Tensor: return self.out_layer(self.silu(self.in_layer(x))) class RMSNorm(torch.nn.Module): def __init__(self, dim: int, dtype=None, device=None, operations=None): super().__init__() self.scale = nn.Parameter(torch.empty((dim), dtype=dtype, device=device)) def forward(self, x: Tensor): return comfy.ldm.common_dit.rms_norm(x, self.scale, 1e-6) class QKNorm(torch.nn.Module): def __init__(self, dim: int, dtype=None, device=None, operations=None): super().__init__() self.query_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations) self.key_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations) def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple: q = self.query_norm(q) k = self.key_norm(k) return q.to(v), k.to(v) class SelfAttention(nn.Module): def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False, dtype=None, device=None, operations=None): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device) self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations) self.proj = operations.Linear(dim, dim, dtype=dtype, device=device) @dataclass class ModulationOut: shift: Tensor scale: Tensor gate: Tensor class Modulation(nn.Module): def __init__(self, dim: int, double: bool, dtype=None, device=None, operations=None): super().__init__() self.is_double = double self.multiplier = 6 if double else 3 self.lin = operations.Linear(dim, self.multiplier * dim, bias=True, dtype=dtype, device=device) def forward(self, vec: Tensor) -> tuple: out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1) return ( ModulationOut(*out[:3]), ModulationOut(*out[3:]) if self.is_double else None, ) class DoubleStreamBlock(nn.Module): def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None): super().__init__() mlp_hidden_dim = int(hidden_size * mlp_ratio) self.num_heads = num_heads self.hidden_size = hidden_size self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations) self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations) self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) self.img_mlp = nn.Sequential( operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device), nn.GELU(approximate="tanh"), operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device), ) self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations) self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations) self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) self.txt_mlp = nn.Sequential( operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device), nn.GELU(approximate="tanh"), operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device), ) self.flipped_img_txt = flipped_img_txt def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None): img_mod1, img_mod2 = self.img_mod(vec) txt_mod1, txt_mod2 = self.txt_mod(vec) # prepare image for attention img_modulated = self.img_norm1(img) img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift img_qkv = self.img_attn.qkv(img_modulated) img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) img_q, img_k = self.img_attn.norm(img_q, img_k, img_v) # prepare txt for attention txt_modulated = self.txt_norm1(txt) txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift txt_qkv = self.txt_attn.qkv(txt_modulated) txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v) if self.flipped_img_txt: # run actual attention attn = attention(torch.cat((img_q, txt_q), dim=2), torch.cat((img_k, txt_k), dim=2), torch.cat((img_v, txt_v), dim=2), pe=pe, mask=attn_mask) img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1]:] else: # run actual attention attn = attention(torch.cat((txt_q, img_q), dim=2), torch.cat((txt_k, img_k), dim=2), torch.cat((txt_v, img_v), dim=2), pe=pe, mask=attn_mask) txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:] # calculate the img bloks img = img + img_mod1.gate * self.img_attn.proj(img_attn) img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift) # calculate the txt bloks txt += txt_mod1.gate * self.txt_attn.proj(txt_attn) txt += txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift) if txt.dtype == torch.float16: txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504) return img, txt class SingleStreamBlock(nn.Module): """ A DiT block with parallel linear layers as described in https://arxiv.org/abs/2302.05442 and adapted modulation interface. """ def __init__( self, hidden_size: int, num_heads: int, mlp_ratio: float = 4.0, qk_scale: float = None, dtype=None, device=None, operations=None ): super().__init__() self.hidden_dim = hidden_size self.num_heads = num_heads head_dim = hidden_size // num_heads self.scale = qk_scale or head_dim**-0.5 self.mlp_hidden_dim = int(hidden_size * mlp_ratio) # qkv and mlp_in self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device) # proj and mlp_out self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device) self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations) self.hidden_size = hidden_size self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) self.mlp_act = nn.GELU(approximate="tanh") self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations) def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None) -> Tensor: mod, _ = self.modulation(vec) x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1) q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k = self.norm(q, k, v) # compute attention attn = attention(q, k, v, pe=pe, mask=attn_mask) # compute activation in mlp stream, cat again and run second linear layer output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2)) x += mod.gate * output if x.dtype == torch.float16: x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504) return x class LastLayer(nn.Module): def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None): super().__init__() self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device) self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device)) def forward(self, x: Tensor, vec: Tensor) -> Tensor: shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1) x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :] x = self.linear(x) return x