# Based on: # https://github.com/PixArt-alpha/PixArt-alpha [Apache 2.0 license] # https://github.com/PixArt-alpha/PixArt-sigma [Apache 2.0 license] import torch import torch.nn as nn from .blocks import ( t2i_modulate, CaptionEmbedder, AttentionKVCompress, MultiHeadCrossAttention, T2IFinalLayer, ) from comfy.ldm.modules.diffusionmodules.mmdit import PatchEmbed, TimestepEmbedder, Mlp, get_1d_sincos_pos_embed_from_grid_torch class PixArtBlock(nn.Module): """ A PixArt block with adaptive layer norm (adaLN-single) conditioning. """ def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, drop_path=0, input_size=None, sampling=None, sr_ratio=1, qk_norm=False, **block_kwargs): super().__init__() self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.attn = AttentionKVCompress( hidden_size, num_heads=num_heads, qkv_bias=True, sampling=sampling, sr_ratio=sr_ratio, qk_norm=qk_norm, **block_kwargs ) self.cross_attn = MultiHeadCrossAttention(hidden_size, num_heads, **block_kwargs) self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) # to be compatible with lower version pytorch approx_gelu = lambda: nn.GELU(approximate="tanh") self.mlp = Mlp(in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0) self.drop_path = nn.Identity() #DropPath(drop_path) if drop_path > 0. else nn.Identity() self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size ** 0.5) self.sampling = sampling self.sr_ratio = sr_ratio def forward(self, x, y, t, mask=None, **kwargs): B, N, C = x.shape shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None] + t.reshape(B, 6, -1)).chunk(6, dim=1) x = x + self.drop_path(gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa)).reshape(B, N, C)) x = x + self.cross_attn(x, y, mask) x = x + self.drop_path(gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp))) return x ### Core PixArt Model ### class PixArt(nn.Module): """ Diffusion model with a Transformer backbone. """ def __init__( self, input_size=32, patch_size=2, in_channels=4, hidden_size=1152, depth=28, num_heads=16, mlp_ratio=4.0, class_dropout_prob=0.1, pred_sigma=True, drop_path: float = 0., caption_channels=4096, pe_interpolation=1.0, pe_precision=None, config=None, model_max_length=120, qk_norm=False, kv_compress_config=None, **kwargs, ): super().__init__() self.pred_sigma = pred_sigma self.in_channels = in_channels self.out_channels = in_channels * 2 if pred_sigma else in_channels self.patch_size = patch_size self.num_heads = num_heads self.pe_interpolation = pe_interpolation self.pe_precision = pe_precision self.depth = depth self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, bias=True) self.t_embedder = TimestepEmbedder(hidden_size) num_patches = self.x_embedder.num_patches self.base_size = input_size // self.patch_size # Will use fixed sin-cos embedding: self.register_buffer("pos_embed", torch.zeros(1, num_patches, hidden_size)) approx_gelu = lambda: nn.GELU(approximate="tanh") self.t_block = nn.Sequential( nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True) ) self.y_embedder = CaptionEmbedder( in_channels=caption_channels, hidden_size=hidden_size, uncond_prob=class_dropout_prob, act_layer=approx_gelu, token_num=model_max_length ) drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)] # stochastic depth decay rule self.kv_compress_config = kv_compress_config if kv_compress_config is None: self.kv_compress_config = { 'sampling': None, 'scale_factor': 1, 'kv_compress_layer': [], } self.blocks = nn.ModuleList([ PixArtBlock( hidden_size, num_heads, mlp_ratio=mlp_ratio, drop_path=drop_path[i], input_size=(input_size // patch_size, input_size // patch_size), sampling=self.kv_compress_config['sampling'], sr_ratio=int( self.kv_compress_config['scale_factor'] ) if i in self.kv_compress_config['kv_compress_layer'] else 1, qk_norm=qk_norm, ) for i in range(depth) ]) self.final_layer = T2IFinalLayer(hidden_size, patch_size, self.out_channels) def forward_raw(self, x, t, y, mask=None, data_info=None): """ Original forward pass of PixArt. x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) t: (N,) tensor of diffusion timesteps y: (N, 1, 120, C) tensor of class labels """ x = x.to(self.dtype) timestep = t.to(self.dtype) y = y.to(self.dtype) pos_embed = self.pos_embed.to(self.dtype) x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2 t = self.t_embedder(timestep.to(x.dtype)) # (N, D) t0 = self.t_block(t) y = self.y_embedder(y, self.training) # (N, 1, L, D) if mask is not None: if mask.shape[0] != y.shape[0]: mask = mask.repeat(y.shape[0] // mask.shape[0], 1) mask = mask.squeeze(1).squeeze(1) y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1]) y_lens = mask.sum(dim=1).tolist() else: y_lens = [y.shape[2]] * y.shape[0] y = y.squeeze(1).view(1, -1, x.shape[-1]) for block in self.blocks: x = block(x, y, t0, y_lens) # (N, T, D) x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels) x = self.unpatchify(x) # (N, out_channels, H, W) return x def forward(self, x, timesteps, context, y=None, **kwargs): """ Forward pass that adapts comfy input to original forward function x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) timesteps: (N,) tensor of diffusion timesteps context: (N, 1, 120, C) conditioning y: extra conditioning. """ ## Still accepts the input w/o that dim but returns garbage if len(context.shape) == 3: context = context.unsqueeze(1) ## run original forward pass out = self.forward_raw( x = x.to(self.dtype), t = timesteps.to(self.dtype), y = context.to(self.dtype), ) ## only return EPS out = out.to(torch.float) eps, _ = out[:, :self.in_channels], out[:, self.in_channels:] return eps def unpatchify(self, x): """ x: (N, T, patch_size**2 * C) imgs: (N, H, W, C) """ c = self.out_channels p = self.x_embedder.patch_size[0] h = w = int(x.shape[1] ** 0.5) assert h * w == x.shape[1] x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) x = torch.einsum('nhwpqc->nchpwq', x) imgs = x.reshape(shape=(x.shape[0], c, h * p, h * p)) return imgs def get_2d_sincos_pos_embed_torch(embed_dim, w, h, pe_interpolation=1.0, base_size=16, device=None, dtype=torch.float32): grid_h, grid_w = torch.meshgrid( torch.arange(h, device=device, dtype=dtype) / (h/base_size) / pe_interpolation, torch.arange(w, device=device, dtype=dtype) / (w/base_size) / pe_interpolation, indexing='ij' ) emb_h = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_h, device=device, dtype=dtype) emb_w = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_w, device=device, dtype=dtype) emb = torch.cat([emb_w, emb_h], dim=1) # (H*W, D) return emb