class ModelMergeSimple: @classmethod def INPUT_TYPES(s): return {"required": { "model1": ("MODEL",), "model2": ("MODEL",), "ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), }} RETURN_TYPES = ("MODEL",) FUNCTION = "merge" CATEGORY = "_for_testing/model_merging" def merge(self, model1, model2, ratio): m = model1.clone() sd = model2.model_state_dict() for k in sd: m.add_patches({k: (sd[k], )}, 1.0 - ratio, ratio) return (m, ) class ModelMergeBlocks: @classmethod def INPUT_TYPES(s): return {"required": { "model1": ("MODEL",), "model2": ("MODEL",), "input": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), "middle": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), "out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}) }} RETURN_TYPES = ("MODEL",) FUNCTION = "merge" CATEGORY = "_for_testing/model_merging" def merge(self, model1, model2, **kwargs): m = model1.clone() sd = model2.model_state_dict() default_ratio = next(iter(kwargs.values())) for k in sd: ratio = default_ratio k_unet = k[len("diffusion_model."):] for arg in kwargs: if k_unet.startswith(arg): ratio = kwargs[arg] m.add_patches({k: (sd[k], )}, 1.0 - ratio, ratio) return (m, ) NODE_CLASS_MAPPINGS = { "ModelMergeSimple": ModelMergeSimple, "ModelMergeBlocks": ModelMergeBlocks }