#Taken from: https://github.com/zju-pi/diff-sampler/blob/main/gits-main/solver_utils.py #under Apache 2 license import torch import numpy as np # A pytorch reimplementation of DEIS (https://github.com/qsh-zh/deis). ############################# ### Utils for DEIS solver ### ############################# #---------------------------------------------------------------------------- # Transfer from the input time (sigma) used in EDM to that (t) used in DEIS. def edm2t(edm_steps, epsilon_s=1e-3, sigma_min=0.002, sigma_max=80): vp_sigma_inv = lambda beta_d, beta_min: lambda sigma: ((beta_min ** 2 + 2 * beta_d * (sigma ** 2 + 1).log()).sqrt() - beta_min) / beta_d vp_beta_d = 2 * (np.log(torch.tensor(sigma_min).cpu() ** 2 + 1) / epsilon_s - np.log(torch.tensor(sigma_max).cpu() ** 2 + 1)) / (epsilon_s - 1) vp_beta_min = np.log(torch.tensor(sigma_max).cpu() ** 2 + 1) - 0.5 * vp_beta_d t_steps = vp_sigma_inv(vp_beta_d.clone().detach().cpu(), vp_beta_min.clone().detach().cpu())(edm_steps.clone().detach().cpu()) return t_steps, vp_beta_min, vp_beta_d + vp_beta_min #---------------------------------------------------------------------------- def cal_poly(prev_t, j, taus): poly = 1 for k in range(prev_t.shape[0]): if k == j: continue poly *= (taus - prev_t[k]) / (prev_t[j] - prev_t[k]) return poly #---------------------------------------------------------------------------- # Transfer from t to alpha_t. def t2alpha_fn(beta_0, beta_1, t): return torch.exp(-0.5 * t ** 2 * (beta_1 - beta_0) - t * beta_0) #---------------------------------------------------------------------------- def cal_intergrand(beta_0, beta_1, taus): with torch.inference_mode(mode=False): taus = taus.clone() beta_0 = beta_0.clone() beta_1 = beta_1.clone() with torch.enable_grad(): taus.requires_grad_(True) alpha = t2alpha_fn(beta_0, beta_1, taus) log_alpha = alpha.log() log_alpha.sum().backward() d_log_alpha_dtau = taus.grad integrand = -0.5 * d_log_alpha_dtau / torch.sqrt(alpha * (1 - alpha)) return integrand #---------------------------------------------------------------------------- def get_deis_coeff_list(t_steps, max_order, N=10000, deis_mode='tab'): """ Get the coefficient list for DEIS sampling. Args: t_steps: A pytorch tensor. The time steps for sampling. max_order: A `int`. Maximum order of the solver. 1 <= max_order <= 4 N: A `int`. Use how many points to perform the numerical integration when deis_mode=='tab'. deis_mode: A `str`. Select between 'tab' and 'rhoab'. Type of DEIS. Returns: A pytorch tensor. A batch of generated samples or sampling trajectories if return_inters=True. """ if deis_mode == 'tab': t_steps, beta_0, beta_1 = edm2t(t_steps) C = [] for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])): order = min(i+1, max_order) if order == 1: C.append([]) else: taus = torch.linspace(t_cur, t_next, N) # split the interval for integral appximation dtau = (t_next - t_cur) / N prev_t = t_steps[[i - k for k in range(order)]] coeff_temp = [] integrand = cal_intergrand(beta_0, beta_1, taus) for j in range(order): poly = cal_poly(prev_t, j, taus) coeff_temp.append(torch.sum(integrand * poly) * dtau) C.append(coeff_temp) elif deis_mode == 'rhoab': # Analytical solution, second order def get_def_intergral_2(a, b, start, end, c): coeff = (end**3 - start**3) / 3 - (end**2 - start**2) * (a + b) / 2 + (end - start) * a * b return coeff / ((c - a) * (c - b)) # Analytical solution, third order def get_def_intergral_3(a, b, c, start, end, d): coeff = (end**4 - start**4) / 4 - (end**3 - start**3) * (a + b + c) / 3 \ + (end**2 - start**2) * (a*b + a*c + b*c) / 2 - (end - start) * a * b * c return coeff / ((d - a) * (d - b) * (d - c)) C = [] for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])): order = min(i, max_order) if order == 0: C.append([]) else: prev_t = t_steps[[i - k for k in range(order+1)]] if order == 1: coeff_cur = ((t_next - prev_t[1])**2 - (t_cur - prev_t[1])**2) / (2 * (t_cur - prev_t[1])) coeff_prev1 = (t_next - t_cur)**2 / (2 * (prev_t[1] - t_cur)) coeff_temp = [coeff_cur, coeff_prev1] elif order == 2: coeff_cur = get_def_intergral_2(prev_t[1], prev_t[2], t_cur, t_next, t_cur) coeff_prev1 = get_def_intergral_2(t_cur, prev_t[2], t_cur, t_next, prev_t[1]) coeff_prev2 = get_def_intergral_2(t_cur, prev_t[1], t_cur, t_next, prev_t[2]) coeff_temp = [coeff_cur, coeff_prev1, coeff_prev2] elif order == 3: coeff_cur = get_def_intergral_3(prev_t[1], prev_t[2], prev_t[3], t_cur, t_next, t_cur) coeff_prev1 = get_def_intergral_3(t_cur, prev_t[2], prev_t[3], t_cur, t_next, prev_t[1]) coeff_prev2 = get_def_intergral_3(t_cur, prev_t[1], prev_t[3], t_cur, t_next, prev_t[2]) coeff_prev3 = get_def_intergral_3(t_cur, prev_t[1], prev_t[2], t_cur, t_next, prev_t[3]) coeff_temp = [coeff_cur, coeff_prev1, coeff_prev2, coeff_prev3] C.append(coeff_temp) return C