import os import torch import comfy.sd import comfy.utils def first_file(path, filenames): for f in filenames: p = os.path.join(path, f) if os.path.exists(p): return p return None def load_diffusers(model_path, output_vae=True, output_clip=True, embedding_directory=None, weight_dtype=torch.float16): """ Load Stable Diffusion model components with custom precision. :param model_path: Path to the model directory. :param output_vae: Whether to load the VAE model. :param output_clip: Whether to load the CLIP model (text encoder). :param embedding_directory: Path to embedding directory. :param weight_dtype: Data type for model weights (torch.float16, torch.float32, torch.bfloat16). :return: (UNet, CLIP, VAE) """ diffusion_model_names = ["diffusion_pytorch_model.fp16.safetensors", "diffusion_pytorch_model.safetensors", "diffusion_pytorch_model.fp16.bin", "diffusion_pytorch_model.bin"] unet_path = first_file(os.path.join(model_path, "unet"), diffusion_model_names) vae_path = first_file(os.path.join(model_path, "vae"), diffusion_model_names) text_encoder_model_names = ["model.fp16.safetensors", "model.safetensors", "pytorch_model.fp16.bin", "pytorch_model.bin"] text_encoder1_path = first_file(os.path.join(model_path, "text_encoder"), text_encoder_model_names) text_encoder2_path = first_file(os.path.join(model_path, "text_encoder_2"), text_encoder_model_names) text_encoder_paths = [text_encoder1_path] if text_encoder1_path else [] if text_encoder2_path: text_encoder_paths.append(text_encoder2_path) unet = comfy.sd.load_diffusion_model(unet_path, dtype=weight_dtype) clip = None if output_clip and text_encoder_paths: clip = comfy.sd.load_clip(text_encoder_paths, embedding_directory=embedding_directory, dtype=weight_dtype) vae = None if output_vae and vae_path: sd = comfy.utils.load_torch_file(vae_path, map_location="cpu") vae = comfy.sd.VAE(sd=sd).to(dtype=weight_dtype) return (unet, clip, vae)