# from https://github.com/bebebe666/OptimalSteps import numpy as np import torch def loglinear_interp(t_steps, num_steps): """ Performs log-linear interpolation of a given array of decreasing numbers. """ xs = np.linspace(0, 1, len(t_steps)) ys = np.log(t_steps[::-1]) new_xs = np.linspace(0, 1, num_steps) new_ys = np.interp(new_xs, xs, ys) interped_ys = np.exp(new_ys)[::-1].copy() return interped_ys NOISE_LEVELS = {"FLUX": [0.9968, 0.9886, 0.9819, 0.975, 0.966, 0.9471, 0.9158, 0.8287, 0.5512, 0.2808, 0.001], "Wan":[1.0, 0.997, 0.995, 0.993, 0.991, 0.989, 0.987, 0.985, 0.98, 0.975, 0.973, 0.968, 0.96, 0.946, 0.927, 0.902, 0.864, 0.776, 0.539, 0.208, 0.001], } class OptimalStepsScheduler: @classmethod def INPUT_TYPES(s): return {"required": {"model_type": (["FLUX", "Wan"], ), "steps": ("INT", {"default": 20, "min": 3, "max": 1000}), "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), } } RETURN_TYPES = ("SIGMAS",) CATEGORY = "sampling/custom_sampling/schedulers" FUNCTION = "get_sigmas" def get_sigmas(self, model_type, steps, denoise): total_steps = steps if denoise < 1.0: if denoise <= 0.0: return (torch.FloatTensor([]),) total_steps = round(steps * denoise) sigmas = NOISE_LEVELS[model_type][:] if (steps + 1) != len(sigmas): sigmas = loglinear_interp(sigmas, steps + 1) sigmas = sigmas[-(total_steps + 1):] sigmas[-1] = 0 return (torch.FloatTensor(sigmas), ) NODE_CLASS_MAPPINGS = { "OptimalStepsScheduler": OptimalStepsScheduler, }