import nodes import node_helpers import torch import comfy.model_management import comfy.model_sampling import math class EmptyLTXVLatentVideo: @classmethod def INPUT_TYPES(s): return {"required": { "width": ("INT", {"default": 768, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}), "height": ("INT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}), "length": ("INT", {"default": 97, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 8}), "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}} RETURN_TYPES = ("LATENT",) FUNCTION = "generate" CATEGORY = "latent/video/ltxv" def generate(self, width, height, length, batch_size=1): latent = torch.zeros([batch_size, 128, ((length - 1) // 8) + 1, height // 32, width // 32], device=comfy.model_management.intermediate_device()) return ({"samples": latent}, ) class LTXVImgToVideo: @classmethod def INPUT_TYPES(s): return {"required": {"positive": ("CONDITIONING", ), "negative": ("CONDITIONING", ), "vae": ("VAE",), "image": ("IMAGE",), "width": ("INT", {"default": 768, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}), "height": ("INT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}), "length": ("INT", {"default": 97, "min": 9, "max": nodes.MAX_RESOLUTION, "step": 8}), "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), "image_noise_scale": ("FLOAT", {"default": 0.15, "min": 0, "max": 1.0, "step": 0.01, "tooltip": "Amount of noise to apply on conditioning image latent."}) }} RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") RETURN_NAMES = ("positive", "negative", "latent") CATEGORY = "conditioning/video_models" FUNCTION = "generate" def generate(self, positive, negative, image, vae, width, height, length, batch_size, image_noise_scale): pixels = comfy.utils.common_upscale(image.movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1) encode_pixels = pixels[:, :, :, :3] t = vae.encode(encode_pixels) positive = node_helpers.conditioning_set_values(positive, {"guiding_latent": t, "guiding_latent_noise_scale": image_noise_scale}) negative = node_helpers.conditioning_set_values(negative, {"guiding_latent": t, "guiding_latent_noise_scale": image_noise_scale}) latent = torch.zeros([batch_size, 128, ((length - 1) // 8) + 1, height // 32, width // 32], device=comfy.model_management.intermediate_device()) latent[:, :, :t.shape[2]] = t return (positive, negative, {"samples": latent}, ) class LTXVConditioning: @classmethod def INPUT_TYPES(s): return {"required": {"positive": ("CONDITIONING", ), "negative": ("CONDITIONING", ), "frame_rate": ("FLOAT", {"default": 25.0, "min": 0.0, "max": 1000.0, "step": 0.01}), }} RETURN_TYPES = ("CONDITIONING", "CONDITIONING") RETURN_NAMES = ("positive", "negative") FUNCTION = "append" CATEGORY = "conditioning/video_models" def append(self, positive, negative, frame_rate): positive = node_helpers.conditioning_set_values(positive, {"frame_rate": frame_rate}) negative = node_helpers.conditioning_set_values(negative, {"frame_rate": frame_rate}) return (positive, negative) class ModelSamplingLTXV: @classmethod def INPUT_TYPES(s): return {"required": { "model": ("MODEL",), "max_shift": ("FLOAT", {"default": 2.05, "min": 0.0, "max": 100.0, "step":0.01}), "base_shift": ("FLOAT", {"default": 0.95, "min": 0.0, "max": 100.0, "step":0.01}), }, "optional": {"latent": ("LATENT",), } } RETURN_TYPES = ("MODEL",) FUNCTION = "patch" CATEGORY = "advanced/model" def patch(self, model, max_shift, base_shift, latent=None): m = model.clone() if latent is None: tokens = 4096 else: tokens = math.prod(latent["samples"].shape[2:]) x1 = 1024 x2 = 4096 mm = (max_shift - base_shift) / (x2 - x1) b = base_shift - mm * x1 shift = (tokens) * mm + b sampling_base = comfy.model_sampling.ModelSamplingFlux sampling_type = comfy.model_sampling.CONST class ModelSamplingAdvanced(sampling_base, sampling_type): pass model_sampling = ModelSamplingAdvanced(model.model.model_config) model_sampling.set_parameters(shift=shift) m.add_object_patch("model_sampling", model_sampling) return (m, ) class LTXVScheduler: @classmethod def INPUT_TYPES(s): return {"required": {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), "max_shift": ("FLOAT", {"default": 2.05, "min": 0.0, "max": 100.0, "step":0.01}), "base_shift": ("FLOAT", {"default": 0.95, "min": 0.0, "max": 100.0, "step":0.01}), "stretch": ("BOOLEAN", { "default": True, "tooltip": "Stretch the sigmas to be in the range [terminal, 1]." }), "terminal": ( "FLOAT", { "default": 0.1, "min": 0.0, "max": 0.99, "step": 0.01, "tooltip": "The terminal value of the sigmas after stretching." }, ), }, "optional": {"latent": ("LATENT",), } } RETURN_TYPES = ("SIGMAS",) CATEGORY = "sampling/custom_sampling/schedulers" FUNCTION = "get_sigmas" def get_sigmas(self, steps, max_shift, base_shift, stretch, terminal, latent=None): if latent is None: tokens = 4096 else: tokens = math.prod(latent["samples"].shape[2:]) sigmas = torch.linspace(1.0, 0.0, steps + 1) x1 = 1024 x2 = 4096 mm = (max_shift - base_shift) / (x2 - x1) b = base_shift - mm * x1 sigma_shift = (tokens) * mm + b power = 1 sigmas = torch.where( sigmas != 0, math.exp(sigma_shift) / (math.exp(sigma_shift) + (1 / sigmas - 1) ** power), 0, ) # Stretch sigmas so that its final value matches the given terminal value. if stretch: non_zero_mask = sigmas != 0 non_zero_sigmas = sigmas[non_zero_mask] one_minus_z = 1.0 - non_zero_sigmas scale_factor = one_minus_z[-1] / (1.0 - terminal) stretched = 1.0 - (one_minus_z / scale_factor) sigmas[non_zero_mask] = stretched return (sigmas,) NODE_CLASS_MAPPINGS = { "EmptyLTXVLatentVideo": EmptyLTXVLatentVideo, "LTXVImgToVideo": LTXVImgToVideo, "ModelSamplingLTXV": ModelSamplingLTXV, "LTXVConditioning": LTXVConditioning, "LTXVScheduler": LTXVScheduler, }