#code originally taken from: https://github.com/ChenyangSi/FreeU (under MIT License) import torch def Fourier_filter(x, threshold, scale): # FFT x_freq = torch.fft.fftn(x.float(), dim=(-2, -1)) x_freq = torch.fft.fftshift(x_freq, dim=(-2, -1)) B, C, H, W = x_freq.shape mask = torch.ones((B, C, H, W), device=x.device) crow, ccol = H // 2, W //2 mask[..., crow - threshold:crow + threshold, ccol - threshold:ccol + threshold] = scale x_freq = x_freq * mask # IFFT x_freq = torch.fft.ifftshift(x_freq, dim=(-2, -1)) x_filtered = torch.fft.ifftn(x_freq, dim=(-2, -1)).real return x_filtered.to(x.dtype) class FreeU: @classmethod def INPUT_TYPES(s): return {"required": { "model": ("MODEL",), "b1": ("FLOAT", {"default": 1.1, "min": 0.0, "max": 10.0, "step": 0.01}), "b2": ("FLOAT", {"default": 1.2, "min": 0.0, "max": 10.0, "step": 0.01}), "s1": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 10.0, "step": 0.01}), "s2": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 10.0, "step": 0.01}), }} RETURN_TYPES = ("MODEL",) FUNCTION = "patch" CATEGORY = "_for_testing" def patch(self, model, b1, b2, s1, s2): def output_block_patch(h, hsp, transformer_options): if h.shape[1] == 1280: h[:,:640] = h[:,:640] * b1 hsp = Fourier_filter(hsp, threshold=1, scale=s1) if h.shape[1] == 640: h[:,:320] = h[:,:320] * b2 hsp = Fourier_filter(hsp, threshold=1, scale=s2) return h, hsp m = model.clone() m.set_model_output_block_patch(output_block_patch) return (m, ) NODE_CLASS_MAPPINGS = { "FreeU": FreeU, }