import torch import torch.nn.functional as F class Mahiro: @classmethod def INPUT_TYPES(s): return {"required": {"model": ("MODEL",), }} RETURN_TYPES = ("MODEL",) RETURN_NAMES = ("patched_model",) FUNCTION = "patch" CATEGORY = "_for_testing" DESCRIPTION = "Modify the guidance to scale more on the 'direction' of the positive prompt rather than the difference between the negative prompt." def patch(self, model): m = model.clone() def mahiro_normd(args): scale: float = args['cond_scale'] cond_p: torch.Tensor = args['cond_denoised'] uncond_p: torch.Tensor = args['uncond_denoised'] #naive leap leap = cond_p * scale #sim with uncond leap u_leap = uncond_p * scale cfg = args["denoised"] merge = (leap + cfg) / 2 normu = torch.sqrt(u_leap.abs()) * u_leap.sign() normm = torch.sqrt(merge.abs()) * merge.sign() sim = F.cosine_similarity(normu, normm).mean() simsc = 2 * (sim+1) wm = (simsc*cfg + (4-simsc)*leap) / 4 return wm m.set_model_sampler_post_cfg_function(mahiro_normd) return (m, ) NODE_CLASS_MAPPINGS = { "Mahiro": Mahiro } NODE_DISPLAY_NAME_MAPPINGS = { "Mahiro": "Mahiro is so cute that she deserves a better guidance function!! (。・ω・。)", }