ComfyUI/comfy/model_patcher.py
Chenlei Hu d055325783
Document get_attr and get_model_object (#6357)
* Document get_attr and get_model_object

* Update model_patcher.py

* Update model_patcher.py

* Update model_patcher.py
2025-01-06 20:12:22 -05:00

1135 lines
48 KiB
Python

"""
This file is part of ComfyUI.
Copyright (C) 2024 Comfy
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
from __future__ import annotations
from typing import Optional, Callable
import torch
import copy
import inspect
import logging
import uuid
import collections
import math
import comfy.utils
import comfy.float
import comfy.model_management
import comfy.lora
import comfy.hooks
import comfy.patcher_extension
from comfy.patcher_extension import CallbacksMP, WrappersMP, PatcherInjection
from comfy.comfy_types import UnetWrapperFunction
def string_to_seed(data):
crc = 0xFFFFFFFF
for byte in data:
if isinstance(byte, str):
byte = ord(byte)
crc ^= byte
for _ in range(8):
if crc & 1:
crc = (crc >> 1) ^ 0xEDB88320
else:
crc >>= 1
return crc ^ 0xFFFFFFFF
def set_model_options_patch_replace(model_options, patch, name, block_name, number, transformer_index=None):
to = model_options["transformer_options"].copy()
if "patches_replace" not in to:
to["patches_replace"] = {}
else:
to["patches_replace"] = to["patches_replace"].copy()
if name not in to["patches_replace"]:
to["patches_replace"][name] = {}
else:
to["patches_replace"][name] = to["patches_replace"][name].copy()
if transformer_index is not None:
block = (block_name, number, transformer_index)
else:
block = (block_name, number)
to["patches_replace"][name][block] = patch
model_options["transformer_options"] = to
return model_options
def set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=False):
model_options["sampler_post_cfg_function"] = model_options.get("sampler_post_cfg_function", []) + [post_cfg_function]
if disable_cfg1_optimization:
model_options["disable_cfg1_optimization"] = True
return model_options
def set_model_options_pre_cfg_function(model_options, pre_cfg_function, disable_cfg1_optimization=False):
model_options["sampler_pre_cfg_function"] = model_options.get("sampler_pre_cfg_function", []) + [pre_cfg_function]
if disable_cfg1_optimization:
model_options["disable_cfg1_optimization"] = True
return model_options
def create_model_options_clone(orig_model_options: dict):
return comfy.patcher_extension.copy_nested_dicts(orig_model_options)
def create_hook_patches_clone(orig_hook_patches):
new_hook_patches = {}
for hook_ref in orig_hook_patches:
new_hook_patches[hook_ref] = {}
for k in orig_hook_patches[hook_ref]:
new_hook_patches[hook_ref][k] = orig_hook_patches[hook_ref][k][:]
return new_hook_patches
def wipe_lowvram_weight(m):
if hasattr(m, "prev_comfy_cast_weights"):
m.comfy_cast_weights = m.prev_comfy_cast_weights
del m.prev_comfy_cast_weights
m.weight_function = None
m.bias_function = None
class LowVramPatch:
def __init__(self, key, patches):
self.key = key
self.patches = patches
def __call__(self, weight):
intermediate_dtype = weight.dtype
if intermediate_dtype not in [torch.float32, torch.float16, torch.bfloat16]: #intermediate_dtype has to be one that is supported in math ops
intermediate_dtype = torch.float32
return comfy.float.stochastic_rounding(comfy.lora.calculate_weight(self.patches[self.key], weight.to(intermediate_dtype), self.key, intermediate_dtype=intermediate_dtype), weight.dtype, seed=string_to_seed(self.key))
return comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=intermediate_dtype)
def get_key_weight(model, key):
set_func = None
convert_func = None
op_keys = key.rsplit('.', 1)
if len(op_keys) < 2:
weight = comfy.utils.get_attr(model, key)
else:
op = comfy.utils.get_attr(model, op_keys[0])
try:
set_func = getattr(op, "set_{}".format(op_keys[1]))
except AttributeError:
pass
try:
convert_func = getattr(op, "convert_{}".format(op_keys[1]))
except AttributeError:
pass
weight = getattr(op, op_keys[1])
if convert_func is not None:
weight = comfy.utils.get_attr(model, key)
return weight, set_func, convert_func
class AutoPatcherEjector:
def __init__(self, model: 'ModelPatcher', skip_and_inject_on_exit_only=False):
self.model = model
self.was_injected = False
self.prev_skip_injection = False
self.skip_and_inject_on_exit_only = skip_and_inject_on_exit_only
def __enter__(self):
self.was_injected = False
self.prev_skip_injection = self.model.skip_injection
if self.skip_and_inject_on_exit_only:
self.model.skip_injection = True
if self.model.is_injected:
self.model.eject_model()
self.was_injected = True
def __exit__(self, *args):
if self.skip_and_inject_on_exit_only:
self.model.skip_injection = self.prev_skip_injection
self.model.inject_model()
if self.was_injected and not self.model.skip_injection:
self.model.inject_model()
self.model.skip_injection = self.prev_skip_injection
class MemoryCounter:
def __init__(self, initial: int, minimum=0):
self.value = initial
self.minimum = minimum
# TODO: add a safe limit besides 0
def use(self, weight: torch.Tensor):
weight_size = weight.nelement() * weight.element_size()
if self.is_useable(weight_size):
self.decrement(weight_size)
return True
return False
def is_useable(self, used: int):
return self.value - used > self.minimum
def decrement(self, used: int):
self.value -= used
class ModelPatcher:
def __init__(self, model, load_device, offload_device, size=0, weight_inplace_update=False):
self.size = size
self.model = model
if not hasattr(self.model, 'device'):
logging.debug("Model doesn't have a device attribute.")
self.model.device = offload_device
elif self.model.device is None:
self.model.device = offload_device
self.patches = {}
self.backup = {}
self.object_patches = {}
self.object_patches_backup = {}
self.model_options = {"transformer_options":{}}
self.model_size()
self.load_device = load_device
self.offload_device = offload_device
self.weight_inplace_update = weight_inplace_update
self.patches_uuid = uuid.uuid4()
self.parent = None
self.attachments: dict[str] = {}
self.additional_models: dict[str, list[ModelPatcher]] = {}
self.callbacks: dict[str, dict[str, list[Callable]]] = CallbacksMP.init_callbacks()
self.wrappers: dict[str, dict[str, list[Callable]]] = WrappersMP.init_wrappers()
self.is_injected = False
self.skip_injection = False
self.injections: dict[str, list[PatcherInjection]] = {}
self.hook_patches: dict[comfy.hooks._HookRef] = {}
self.hook_patches_backup: dict[comfy.hooks._HookRef] = {}
self.hook_backup: dict[str, tuple[torch.Tensor, torch.device]] = {}
self.cached_hook_patches: dict[comfy.hooks.HookGroup, dict[str, torch.Tensor]] = {}
self.current_hooks: Optional[comfy.hooks.HookGroup] = None
self.forced_hooks: Optional[comfy.hooks.HookGroup] = None # NOTE: only used for CLIP at this time
self.is_clip = False
self.hook_mode = comfy.hooks.EnumHookMode.MaxSpeed
if not hasattr(self.model, 'model_loaded_weight_memory'):
self.model.model_loaded_weight_memory = 0
if not hasattr(self.model, 'lowvram_patch_counter'):
self.model.lowvram_patch_counter = 0
if not hasattr(self.model, 'model_lowvram'):
self.model.model_lowvram = False
if not hasattr(self.model, 'current_weight_patches_uuid'):
self.model.current_weight_patches_uuid = None
def model_size(self):
if self.size > 0:
return self.size
self.size = comfy.model_management.module_size(self.model)
return self.size
def loaded_size(self):
return self.model.model_loaded_weight_memory
def lowvram_patch_counter(self):
return self.model.lowvram_patch_counter
def clone(self):
n = self.__class__(self.model, self.load_device, self.offload_device, self.size, weight_inplace_update=self.weight_inplace_update)
n.patches = {}
for k in self.patches:
n.patches[k] = self.patches[k][:]
n.patches_uuid = self.patches_uuid
n.object_patches = self.object_patches.copy()
n.model_options = copy.deepcopy(self.model_options)
n.backup = self.backup
n.object_patches_backup = self.object_patches_backup
n.parent = self
# attachments
n.attachments = {}
for k in self.attachments:
if hasattr(self.attachments[k], "on_model_patcher_clone"):
n.attachments[k] = self.attachments[k].on_model_patcher_clone()
else:
n.attachments[k] = self.attachments[k]
# additional models
for k, c in self.additional_models.items():
n.additional_models[k] = [x.clone() for x in c]
# callbacks
for k, c in self.callbacks.items():
n.callbacks[k] = {}
for k1, c1 in c.items():
n.callbacks[k][k1] = c1.copy()
# sample wrappers
for k, w in self.wrappers.items():
n.wrappers[k] = {}
for k1, w1 in w.items():
n.wrappers[k][k1] = w1.copy()
# injection
n.is_injected = self.is_injected
n.skip_injection = self.skip_injection
for k, i in self.injections.items():
n.injections[k] = i.copy()
# hooks
n.hook_patches = create_hook_patches_clone(self.hook_patches)
n.hook_patches_backup = create_hook_patches_clone(self.hook_patches_backup)
for group in self.cached_hook_patches:
n.cached_hook_patches[group] = {}
for k in self.cached_hook_patches[group]:
n.cached_hook_patches[group][k] = self.cached_hook_patches[group][k]
n.hook_backup = self.hook_backup
n.current_hooks = self.current_hooks.clone() if self.current_hooks else self.current_hooks
n.forced_hooks = self.forced_hooks.clone() if self.forced_hooks else self.forced_hooks
n.is_clip = self.is_clip
n.hook_mode = self.hook_mode
for callback in self.get_all_callbacks(CallbacksMP.ON_CLONE):
callback(self, n)
return n
def is_clone(self, other):
if hasattr(other, 'model') and self.model is other.model:
return True
return False
def clone_has_same_weights(self, clone: 'ModelPatcher'):
if not self.is_clone(clone):
return False
if self.current_hooks != clone.current_hooks:
return False
if self.forced_hooks != clone.forced_hooks:
return False
if self.hook_patches.keys() != clone.hook_patches.keys():
return False
if self.attachments.keys() != clone.attachments.keys():
return False
if self.additional_models.keys() != clone.additional_models.keys():
return False
for key in self.callbacks:
if len(self.callbacks[key]) != len(clone.callbacks[key]):
return False
for key in self.wrappers:
if len(self.wrappers[key]) != len(clone.wrappers[key]):
return False
if self.injections.keys() != clone.injections.keys():
return False
if len(self.patches) == 0 and len(clone.patches) == 0:
return True
if self.patches_uuid == clone.patches_uuid:
if len(self.patches) != len(clone.patches):
logging.warning("WARNING: something went wrong, same patch uuid but different length of patches.")
else:
return True
def memory_required(self, input_shape):
return self.model.memory_required(input_shape=input_shape)
def set_model_sampler_cfg_function(self, sampler_cfg_function, disable_cfg1_optimization=False):
if len(inspect.signature(sampler_cfg_function).parameters) == 3:
self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
else:
self.model_options["sampler_cfg_function"] = sampler_cfg_function
if disable_cfg1_optimization:
self.model_options["disable_cfg1_optimization"] = True
def set_model_sampler_post_cfg_function(self, post_cfg_function, disable_cfg1_optimization=False):
self.model_options = set_model_options_post_cfg_function(self.model_options, post_cfg_function, disable_cfg1_optimization)
def set_model_sampler_pre_cfg_function(self, pre_cfg_function, disable_cfg1_optimization=False):
self.model_options = set_model_options_pre_cfg_function(self.model_options, pre_cfg_function, disable_cfg1_optimization)
def set_model_unet_function_wrapper(self, unet_wrapper_function: UnetWrapperFunction):
self.model_options["model_function_wrapper"] = unet_wrapper_function
def set_model_denoise_mask_function(self, denoise_mask_function):
self.model_options["denoise_mask_function"] = denoise_mask_function
def set_model_patch(self, patch, name):
to = self.model_options["transformer_options"]
if "patches" not in to:
to["patches"] = {}
to["patches"][name] = to["patches"].get(name, []) + [patch]
def set_model_patch_replace(self, patch, name, block_name, number, transformer_index=None):
self.model_options = set_model_options_patch_replace(self.model_options, patch, name, block_name, number, transformer_index=transformer_index)
def set_model_attn1_patch(self, patch):
self.set_model_patch(patch, "attn1_patch")
def set_model_attn2_patch(self, patch):
self.set_model_patch(patch, "attn2_patch")
def set_model_attn1_replace(self, patch, block_name, number, transformer_index=None):
self.set_model_patch_replace(patch, "attn1", block_name, number, transformer_index)
def set_model_attn2_replace(self, patch, block_name, number, transformer_index=None):
self.set_model_patch_replace(patch, "attn2", block_name, number, transformer_index)
def set_model_attn1_output_patch(self, patch):
self.set_model_patch(patch, "attn1_output_patch")
def set_model_attn2_output_patch(self, patch):
self.set_model_patch(patch, "attn2_output_patch")
def set_model_input_block_patch(self, patch):
self.set_model_patch(patch, "input_block_patch")
def set_model_input_block_patch_after_skip(self, patch):
self.set_model_patch(patch, "input_block_patch_after_skip")
def set_model_output_block_patch(self, patch):
self.set_model_patch(patch, "output_block_patch")
def set_model_emb_patch(self, patch):
self.set_model_patch(patch, "emb_patch")
def set_model_forward_timestep_embed_patch(self, patch):
self.set_model_patch(patch, "forward_timestep_embed_patch")
def add_object_patch(self, name, obj):
self.object_patches[name] = obj
def get_model_object(self, name: str) -> torch.nn.Module:
"""Retrieves a nested attribute from an object using dot notation considering
object patches.
Args:
name (str): The attribute path using dot notation (e.g. "model.layer.weight")
Returns:
The value of the requested attribute
Example:
patcher = ModelPatcher()
weight = patcher.get_model_object("layer1.conv.weight")
"""
if name in self.object_patches:
return self.object_patches[name]
else:
if name in self.object_patches_backup:
return self.object_patches_backup[name]
else:
return comfy.utils.get_attr(self.model, name)
def model_patches_to(self, device):
to = self.model_options["transformer_options"]
if "patches" in to:
patches = to["patches"]
for name in patches:
patch_list = patches[name]
for i in range(len(patch_list)):
if hasattr(patch_list[i], "to"):
patch_list[i] = patch_list[i].to(device)
if "patches_replace" in to:
patches = to["patches_replace"]
for name in patches:
patch_list = patches[name]
for k in patch_list:
if hasattr(patch_list[k], "to"):
patch_list[k] = patch_list[k].to(device)
if "model_function_wrapper" in self.model_options:
wrap_func = self.model_options["model_function_wrapper"]
if hasattr(wrap_func, "to"):
self.model_options["model_function_wrapper"] = wrap_func.to(device)
def model_dtype(self):
if hasattr(self.model, "get_dtype"):
return self.model.get_dtype()
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
with self.use_ejected():
p = set()
model_sd = self.model.state_dict()
for k in patches:
offset = None
function = None
if isinstance(k, str):
key = k
else:
offset = k[1]
key = k[0]
if len(k) > 2:
function = k[2]
if key in model_sd:
p.add(k)
current_patches = self.patches.get(key, [])
current_patches.append((strength_patch, patches[k], strength_model, offset, function))
self.patches[key] = current_patches
self.patches_uuid = uuid.uuid4()
return list(p)
def get_key_patches(self, filter_prefix=None):
model_sd = self.model_state_dict()
p = {}
for k in model_sd:
if filter_prefix is not None:
if not k.startswith(filter_prefix):
continue
bk = self.backup.get(k, None)
hbk = self.hook_backup.get(k, None)
weight, set_func, convert_func = get_key_weight(self.model, k)
if bk is not None:
weight = bk.weight
if hbk is not None:
weight = hbk[0]
if convert_func is None:
convert_func = lambda a, **kwargs: a
if k in self.patches:
p[k] = [(weight, convert_func)] + self.patches[k]
else:
p[k] = [(weight, convert_func)]
return p
def model_state_dict(self, filter_prefix=None):
with self.use_ejected():
sd = self.model.state_dict()
keys = list(sd.keys())
if filter_prefix is not None:
for k in keys:
if not k.startswith(filter_prefix):
sd.pop(k)
return sd
def patch_weight_to_device(self, key, device_to=None, inplace_update=False):
if key not in self.patches:
return
weight, set_func, convert_func = get_key_weight(self.model, key)
inplace_update = self.weight_inplace_update or inplace_update
if key not in self.backup:
self.backup[key] = collections.namedtuple('Dimension', ['weight', 'inplace_update'])(weight.to(device=self.offload_device, copy=inplace_update), inplace_update)
if device_to is not None:
temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True)
else:
temp_weight = weight.to(torch.float32, copy=True)
if convert_func is not None:
temp_weight = convert_func(temp_weight, inplace=True)
out_weight = comfy.lora.calculate_weight(self.patches[key], temp_weight, key)
if set_func is None:
out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype, seed=string_to_seed(key))
if inplace_update:
comfy.utils.copy_to_param(self.model, key, out_weight)
else:
comfy.utils.set_attr_param(self.model, key, out_weight)
else:
set_func(out_weight, inplace_update=inplace_update, seed=string_to_seed(key))
def _load_list(self):
loading = []
for n, m in self.model.named_modules():
params = []
skip = False
for name, param in m.named_parameters(recurse=False):
params.append(name)
for name, param in m.named_parameters(recurse=True):
if name not in params:
skip = True # skip random weights in non leaf modules
break
if not skip and (hasattr(m, "comfy_cast_weights") or len(params) > 0):
loading.append((comfy.model_management.module_size(m), n, m, params))
return loading
def load(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False, full_load=False):
with self.use_ejected():
self.unpatch_hooks()
mem_counter = 0
patch_counter = 0
lowvram_counter = 0
loading = self._load_list()
load_completely = []
loading.sort(reverse=True)
for x in loading:
n = x[1]
m = x[2]
params = x[3]
module_mem = x[0]
lowvram_weight = False
if not full_load and hasattr(m, "comfy_cast_weights"):
if mem_counter + module_mem >= lowvram_model_memory:
lowvram_weight = True
lowvram_counter += 1
if hasattr(m, "prev_comfy_cast_weights"): #Already lowvramed
continue
weight_key = "{}.weight".format(n)
bias_key = "{}.bias".format(n)
if lowvram_weight:
if weight_key in self.patches:
if force_patch_weights:
self.patch_weight_to_device(weight_key)
else:
m.weight_function = LowVramPatch(weight_key, self.patches)
patch_counter += 1
if bias_key in self.patches:
if force_patch_weights:
self.patch_weight_to_device(bias_key)
else:
m.bias_function = LowVramPatch(bias_key, self.patches)
patch_counter += 1
m.prev_comfy_cast_weights = m.comfy_cast_weights
m.comfy_cast_weights = True
else:
if hasattr(m, "comfy_cast_weights"):
if m.comfy_cast_weights:
wipe_lowvram_weight(m)
if full_load or mem_counter + module_mem < lowvram_model_memory:
mem_counter += module_mem
load_completely.append((module_mem, n, m, params))
load_completely.sort(reverse=True)
for x in load_completely:
n = x[1]
m = x[2]
params = x[3]
if hasattr(m, "comfy_patched_weights"):
if m.comfy_patched_weights == True:
continue
for param in params:
self.patch_weight_to_device("{}.{}".format(n, param), device_to=device_to)
logging.debug("lowvram: loaded module regularly {} {}".format(n, m))
m.comfy_patched_weights = True
for x in load_completely:
x[2].to(device_to)
if lowvram_counter > 0:
logging.info("loaded partially {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), patch_counter))
self.model.model_lowvram = True
else:
logging.info("loaded completely {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load))
self.model.model_lowvram = False
if full_load:
self.model.to(device_to)
mem_counter = self.model_size()
self.model.lowvram_patch_counter += patch_counter
self.model.device = device_to
self.model.model_loaded_weight_memory = mem_counter
self.model.current_weight_patches_uuid = self.patches_uuid
for callback in self.get_all_callbacks(CallbacksMP.ON_LOAD):
callback(self, device_to, lowvram_model_memory, force_patch_weights, full_load)
self.apply_hooks(self.forced_hooks, force_apply=True)
def patch_model(self, device_to=None, lowvram_model_memory=0, load_weights=True, force_patch_weights=False):
with self.use_ejected():
for k in self.object_patches:
old = comfy.utils.set_attr(self.model, k, self.object_patches[k])
if k not in self.object_patches_backup:
self.object_patches_backup[k] = old
if lowvram_model_memory == 0:
full_load = True
else:
full_load = False
if load_weights:
self.load(device_to, lowvram_model_memory=lowvram_model_memory, force_patch_weights=force_patch_weights, full_load=full_load)
self.inject_model()
return self.model
def unpatch_model(self, device_to=None, unpatch_weights=True):
self.eject_model()
if unpatch_weights:
self.unpatch_hooks()
if self.model.model_lowvram:
for m in self.model.modules():
wipe_lowvram_weight(m)
self.model.model_lowvram = False
self.model.lowvram_patch_counter = 0
keys = list(self.backup.keys())
for k in keys:
bk = self.backup[k]
if bk.inplace_update:
comfy.utils.copy_to_param(self.model, k, bk.weight)
else:
comfy.utils.set_attr_param(self.model, k, bk.weight)
self.model.current_weight_patches_uuid = None
self.backup.clear()
if device_to is not None:
self.model.to(device_to)
self.model.device = device_to
self.model.model_loaded_weight_memory = 0
for m in self.model.modules():
if hasattr(m, "comfy_patched_weights"):
del m.comfy_patched_weights
keys = list(self.object_patches_backup.keys())
for k in keys:
comfy.utils.set_attr(self.model, k, self.object_patches_backup[k])
self.object_patches_backup.clear()
def partially_unload(self, device_to, memory_to_free=0):
with self.use_ejected():
memory_freed = 0
patch_counter = 0
unload_list = self._load_list()
unload_list.sort()
for unload in unload_list:
if memory_to_free < memory_freed:
break
module_mem = unload[0]
n = unload[1]
m = unload[2]
params = unload[3]
lowvram_possible = hasattr(m, "comfy_cast_weights")
if hasattr(m, "comfy_patched_weights") and m.comfy_patched_weights == True:
move_weight = True
for param in params:
key = "{}.{}".format(n, param)
bk = self.backup.get(key, None)
if bk is not None:
if not lowvram_possible:
move_weight = False
break
if bk.inplace_update:
comfy.utils.copy_to_param(self.model, key, bk.weight)
else:
comfy.utils.set_attr_param(self.model, key, bk.weight)
self.backup.pop(key)
weight_key = "{}.weight".format(n)
bias_key = "{}.bias".format(n)
if move_weight:
m.to(device_to)
if lowvram_possible:
if weight_key in self.patches:
m.weight_function = LowVramPatch(weight_key, self.patches)
patch_counter += 1
if bias_key in self.patches:
m.bias_function = LowVramPatch(bias_key, self.patches)
patch_counter += 1
m.prev_comfy_cast_weights = m.comfy_cast_weights
m.comfy_cast_weights = True
m.comfy_patched_weights = False
memory_freed += module_mem
logging.debug("freed {}".format(n))
self.model.model_lowvram = True
self.model.lowvram_patch_counter += patch_counter
self.model.model_loaded_weight_memory -= memory_freed
return memory_freed
def partially_load(self, device_to, extra_memory=0, force_patch_weights=False):
with self.use_ejected(skip_and_inject_on_exit_only=True):
unpatch_weights = self.model.current_weight_patches_uuid is not None and (self.model.current_weight_patches_uuid != self.patches_uuid or force_patch_weights)
# TODO: force_patch_weights should not unload + reload full model
used = self.model.model_loaded_weight_memory
self.unpatch_model(self.offload_device, unpatch_weights=unpatch_weights)
if unpatch_weights:
extra_memory += (used - self.model.model_loaded_weight_memory)
self.patch_model(load_weights=False)
full_load = False
if self.model.model_lowvram == False and self.model.model_loaded_weight_memory > 0:
self.apply_hooks(self.forced_hooks, force_apply=True)
return 0
if self.model.model_loaded_weight_memory + extra_memory > self.model_size():
full_load = True
current_used = self.model.model_loaded_weight_memory
try:
self.load(device_to, lowvram_model_memory=current_used + extra_memory, force_patch_weights=force_patch_weights, full_load=full_load)
except Exception as e:
self.detach()
raise e
return self.model.model_loaded_weight_memory - current_used
def detach(self, unpatch_all=True):
self.eject_model()
self.model_patches_to(self.offload_device)
if unpatch_all:
self.unpatch_model(self.offload_device, unpatch_weights=unpatch_all)
for callback in self.get_all_callbacks(CallbacksMP.ON_DETACH):
callback(self, unpatch_all)
return self.model
def current_loaded_device(self):
return self.model.device
def calculate_weight(self, patches, weight, key, intermediate_dtype=torch.float32):
logging.warning("The ModelPatcher.calculate_weight function is deprecated, please use: comfy.lora.calculate_weight instead")
return comfy.lora.calculate_weight(patches, weight, key, intermediate_dtype=intermediate_dtype)
def cleanup(self):
self.clean_hooks()
if hasattr(self.model, "current_patcher"):
self.model.current_patcher = None
for callback in self.get_all_callbacks(CallbacksMP.ON_CLEANUP):
callback(self)
def add_callback(self, call_type: str, callback: Callable):
self.add_callback_with_key(call_type, None, callback)
def add_callback_with_key(self, call_type: str, key: str, callback: Callable):
c = self.callbacks.setdefault(call_type, {}).setdefault(key, [])
c.append(callback)
def remove_callbacks_with_key(self, call_type: str, key: str):
c = self.callbacks.get(call_type, {})
if key in c:
c.pop(key)
def get_callbacks(self, call_type: str, key: str):
return self.callbacks.get(call_type, {}).get(key, [])
def get_all_callbacks(self, call_type: str):
c_list = []
for c in self.callbacks.get(call_type, {}).values():
c_list.extend(c)
return c_list
def add_wrapper(self, wrapper_type: str, wrapper: Callable):
self.add_wrapper_with_key(wrapper_type, None, wrapper)
def add_wrapper_with_key(self, wrapper_type: str, key: str, wrapper: Callable):
w = self.wrappers.setdefault(wrapper_type, {}).setdefault(key, [])
w.append(wrapper)
def remove_wrappers_with_key(self, wrapper_type: str, key: str):
w = self.wrappers.get(wrapper_type, {})
if key in w:
w.pop(key)
def get_wrappers(self, wrapper_type: str, key: str):
return self.wrappers.get(wrapper_type, {}).get(key, [])
def get_all_wrappers(self, wrapper_type: str):
w_list = []
for w in self.wrappers.get(wrapper_type, {}).values():
w_list.extend(w)
return w_list
def set_attachments(self, key: str, attachment):
self.attachments[key] = attachment
def remove_attachments(self, key: str):
if key in self.attachments:
self.attachments.pop(key)
def get_attachment(self, key: str):
return self.attachments.get(key, None)
def set_injections(self, key: str, injections: list[PatcherInjection]):
self.injections[key] = injections
def remove_injections(self, key: str):
if key in self.injections:
self.injections.pop(key)
def set_additional_models(self, key: str, models: list['ModelPatcher']):
self.additional_models[key] = models
def remove_additional_models(self, key: str):
if key in self.additional_models:
self.additional_models.pop(key)
def get_additional_models_with_key(self, key: str):
return self.additional_models.get(key, [])
def get_additional_models(self):
all_models = []
for models in self.additional_models.values():
all_models.extend(models)
return all_models
def get_nested_additional_models(self):
def _evaluate_sub_additional_models(prev_models: list[ModelPatcher], cache_set: set[ModelPatcher]):
'''Make sure circular references do not cause infinite recursion.'''
next_models = []
for model in prev_models:
candidates = model.get_additional_models()
for c in candidates:
if c not in cache_set:
next_models.append(c)
cache_set.add(c)
if len(next_models) == 0:
return prev_models
return prev_models + _evaluate_sub_additional_models(next_models, cache_set)
all_models = self.get_additional_models()
models_set = set(all_models)
real_all_models = _evaluate_sub_additional_models(prev_models=all_models, cache_set=models_set)
return real_all_models
def use_ejected(self, skip_and_inject_on_exit_only=False):
return AutoPatcherEjector(self, skip_and_inject_on_exit_only=skip_and_inject_on_exit_only)
def inject_model(self):
if self.is_injected or self.skip_injection:
return
for injections in self.injections.values():
for inj in injections:
inj.inject(self)
self.is_injected = True
if self.is_injected:
for callback in self.get_all_callbacks(CallbacksMP.ON_INJECT_MODEL):
callback(self)
def eject_model(self):
if not self.is_injected:
return
for injections in self.injections.values():
for inj in injections:
inj.eject(self)
self.is_injected = False
for callback in self.get_all_callbacks(CallbacksMP.ON_EJECT_MODEL):
callback(self)
def pre_run(self):
if hasattr(self.model, "current_patcher"):
self.model.current_patcher = self
for callback in self.get_all_callbacks(CallbacksMP.ON_PRE_RUN):
callback(self)
def prepare_state(self, timestep):
for callback in self.get_all_callbacks(CallbacksMP.ON_PREPARE_STATE):
callback(self, timestep)
def restore_hook_patches(self):
if len(self.hook_patches_backup) > 0:
self.hook_patches = self.hook_patches_backup
self.hook_patches_backup = {}
def set_hook_mode(self, hook_mode: comfy.hooks.EnumHookMode):
self.hook_mode = hook_mode
def prepare_hook_patches_current_keyframe(self, t: torch.Tensor, hook_group: comfy.hooks.HookGroup, model_options: dict[str]):
curr_t = t[0]
reset_current_hooks = False
transformer_options = model_options.get("transformer_options", {})
for hook in hook_group.hooks:
changed = hook.hook_keyframe.prepare_current_keyframe(curr_t=curr_t, transformer_options=transformer_options)
# if keyframe changed, remove any cached HookGroups that contain hook with the same hook_ref;
# this will cause the weights to be recalculated when sampling
if changed:
# reset current_hooks if contains hook that changed
if self.current_hooks is not None:
for current_hook in self.current_hooks.hooks:
if current_hook == hook:
reset_current_hooks = True
break
for cached_group in list(self.cached_hook_patches.keys()):
if cached_group.contains(hook):
self.cached_hook_patches.pop(cached_group)
if reset_current_hooks:
self.patch_hooks(None)
def register_all_hook_patches(self, hooks_dict: dict[comfy.hooks.EnumHookType, dict[comfy.hooks.Hook, None]], target: comfy.hooks.EnumWeightTarget, model_options: dict=None):
self.restore_hook_patches()
registered_hooks: list[comfy.hooks.Hook] = []
# handle WrapperHooks, if model_options provided
if model_options is not None:
for hook in hooks_dict.get(comfy.hooks.EnumHookType.Wrappers, {}):
hook.add_hook_patches(self, model_options, target, registered_hooks)
# handle WeightHooks
weight_hooks_to_register: list[comfy.hooks.WeightHook] = []
for hook in hooks_dict.get(comfy.hooks.EnumHookType.Weight, {}):
if hook.hook_ref not in self.hook_patches:
weight_hooks_to_register.append(hook)
if len(weight_hooks_to_register) > 0:
# clone hook_patches to become backup so that any non-dynamic hooks will return to their original state
self.hook_patches_backup = create_hook_patches_clone(self.hook_patches)
for hook in weight_hooks_to_register:
hook.add_hook_patches(self, model_options, target, registered_hooks)
for callback in self.get_all_callbacks(CallbacksMP.ON_REGISTER_ALL_HOOK_PATCHES):
callback(self, hooks_dict, target)
def add_hook_patches(self, hook: comfy.hooks.WeightHook, patches, strength_patch=1.0, strength_model=1.0):
with self.use_ejected():
# NOTE: this mirrors behavior of add_patches func
current_hook_patches: dict[str,list] = self.hook_patches.get(hook.hook_ref, {})
p = set()
model_sd = self.model.state_dict()
for k in patches:
offset = None
function = None
if isinstance(k, str):
key = k
else:
offset = k[1]
key = k[0]
if len(k) > 2:
function = k[2]
if key in model_sd:
p.add(k)
current_patches: list[tuple] = current_hook_patches.get(key, [])
current_patches.append((strength_patch, patches[k], strength_model, offset, function))
current_hook_patches[key] = current_patches
self.hook_patches[hook.hook_ref] = current_hook_patches
# since should care about these patches too to determine if same model, reroll patches_uuid
self.patches_uuid = uuid.uuid4()
return list(p)
def get_combined_hook_patches(self, hooks: comfy.hooks.HookGroup):
# combined_patches will contain weights of all relevant hooks, per key
combined_patches = {}
if hooks is not None:
for hook in hooks.hooks:
hook_patches: dict = self.hook_patches.get(hook.hook_ref, {})
for key in hook_patches.keys():
current_patches: list[tuple] = combined_patches.get(key, [])
if math.isclose(hook.strength, 1.0):
current_patches.extend(hook_patches[key])
else:
# patches are stored as tuples: (strength_patch, (tuple_with_weights,), strength_model)
for patch in hook_patches[key]:
new_patch = list(patch)
new_patch[0] *= hook.strength
current_patches.append(tuple(new_patch))
combined_patches[key] = current_patches
return combined_patches
def apply_hooks(self, hooks: comfy.hooks.HookGroup, transformer_options: dict=None, force_apply=False):
# TODO: return transformer_options dict with any additions from hooks
if self.current_hooks == hooks and (not force_apply or (not self.is_clip and hooks is None)):
return {}
self.patch_hooks(hooks=hooks)
for callback in self.get_all_callbacks(CallbacksMP.ON_APPLY_HOOKS):
callback(self, hooks)
return {}
def patch_hooks(self, hooks: comfy.hooks.HookGroup):
with self.use_ejected():
self.unpatch_hooks()
if hooks is not None:
model_sd_keys = list(self.model_state_dict().keys())
memory_counter = None
if self.hook_mode == comfy.hooks.EnumHookMode.MaxSpeed:
# TODO: minimum_counter should have a minimum that conforms to loaded model requirements
memory_counter = MemoryCounter(initial=comfy.model_management.get_free_memory(self.load_device),
minimum=comfy.model_management.minimum_inference_memory()*2)
# if have cached weights for hooks, use it
cached_weights = self.cached_hook_patches.get(hooks, None)
if cached_weights is not None:
for key in cached_weights:
if key not in model_sd_keys:
logging.warning(f"Cached hook could not patch. Key does not exist in model: {key}")
continue
self.patch_cached_hook_weights(cached_weights=cached_weights, key=key, memory_counter=memory_counter)
else:
relevant_patches = self.get_combined_hook_patches(hooks=hooks)
original_weights = None
if len(relevant_patches) > 0:
original_weights = self.get_key_patches()
for key in relevant_patches:
if key not in model_sd_keys:
logging.warning(f"Cached hook would not patch. Key does not exist in model: {key}")
continue
self.patch_hook_weight_to_device(hooks=hooks, combined_patches=relevant_patches, key=key, original_weights=original_weights,
memory_counter=memory_counter)
self.current_hooks = hooks
def patch_cached_hook_weights(self, cached_weights: dict, key: str, memory_counter: MemoryCounter):
if key not in self.hook_backup:
weight: torch.Tensor = comfy.utils.get_attr(self.model, key)
target_device = self.offload_device
if self.hook_mode == comfy.hooks.EnumHookMode.MaxSpeed:
used = memory_counter.use(weight)
if used:
target_device = weight.device
self.hook_backup[key] = (weight.to(device=target_device, copy=True), weight.device)
comfy.utils.copy_to_param(self.model, key, cached_weights[key][0].to(device=cached_weights[key][1]))
def clear_cached_hook_weights(self):
self.cached_hook_patches.clear()
self.patch_hooks(None)
def patch_hook_weight_to_device(self, hooks: comfy.hooks.HookGroup, combined_patches: dict, key: str, original_weights: dict, memory_counter: MemoryCounter):
if key not in combined_patches:
return
weight, set_func, convert_func = get_key_weight(self.model, key)
weight: torch.Tensor
if key not in self.hook_backup:
target_device = self.offload_device
if self.hook_mode == comfy.hooks.EnumHookMode.MaxSpeed:
used = memory_counter.use(weight)
if used:
target_device = weight.device
self.hook_backup[key] = (weight.to(device=target_device, copy=True), weight.device)
# TODO: properly handle LowVramPatch, if it ends up an issue
temp_weight = comfy.model_management.cast_to_device(weight, weight.device, torch.float32, copy=True)
if convert_func is not None:
temp_weight = convert_func(temp_weight, inplace=True)
out_weight = comfy.lora.calculate_weight(combined_patches[key],
temp_weight,
key, original_weights=original_weights)
del original_weights[key]
if set_func is None:
out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype, seed=string_to_seed(key))
comfy.utils.copy_to_param(self.model, key, out_weight)
else:
set_func(out_weight, inplace_update=True, seed=string_to_seed(key))
if self.hook_mode == comfy.hooks.EnumHookMode.MaxSpeed:
# TODO: disable caching if not enough system RAM to do so
target_device = self.offload_device
used = memory_counter.use(weight)
if used:
target_device = weight.device
self.cached_hook_patches.setdefault(hooks, {})
self.cached_hook_patches[hooks][key] = (out_weight.to(device=target_device, copy=False), weight.device)
del temp_weight
del out_weight
del weight
def unpatch_hooks(self) -> None:
with self.use_ejected():
if len(self.hook_backup) == 0:
self.current_hooks = None
return
keys = list(self.hook_backup.keys())
for k in keys:
comfy.utils.copy_to_param(self.model, k, self.hook_backup[k][0].to(device=self.hook_backup[k][1]))
self.hook_backup.clear()
self.current_hooks = None
def clean_hooks(self):
self.unpatch_hooks()
self.clear_cached_hook_weights()
def __del__(self):
self.detach(unpatch_all=False)