ComfyUI/comfy_extras/nodes_clip_sdxl.py
Chenlei Hu 563291ee51
Enforce all pyflake lint rules (#6033)
* Enforce F821 undefined-name

* Enforce all pyflake lint rules
2024-12-12 19:29:37 -05:00

55 lines
2.5 KiB
Python

from nodes import MAX_RESOLUTION
class CLIPTextEncodeSDXLRefiner:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"ascore": ("FLOAT", {"default": 6.0, "min": 0.0, "max": 1000.0, "step": 0.01}),
"width": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
"height": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
"text": ("STRING", {"multiline": True, "dynamicPrompts": True}), "clip": ("CLIP", ),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "encode"
CATEGORY = "advanced/conditioning"
def encode(self, clip, ascore, width, height, text):
tokens = clip.tokenize(text)
return (clip.encode_from_tokens_scheduled(tokens, add_dict={"aesthetic_score": ascore, "width": width, "height": height}), )
class CLIPTextEncodeSDXL:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"clip": ("CLIP", ),
"width": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
"height": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
"crop_w": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION}),
"crop_h": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION}),
"target_width": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
"target_height": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
"text_g": ("STRING", {"multiline": True, "dynamicPrompts": True}),
"text_l": ("STRING", {"multiline": True, "dynamicPrompts": True}),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "encode"
CATEGORY = "advanced/conditioning"
def encode(self, clip, width, height, crop_w, crop_h, target_width, target_height, text_g, text_l):
tokens = clip.tokenize(text_g)
tokens["l"] = clip.tokenize(text_l)["l"]
if len(tokens["l"]) != len(tokens["g"]):
empty = clip.tokenize("")
while len(tokens["l"]) < len(tokens["g"]):
tokens["l"] += empty["l"]
while len(tokens["l"]) > len(tokens["g"]):
tokens["g"] += empty["g"]
return (clip.encode_from_tokens_scheduled(tokens, add_dict={"width": width, "height": height, "crop_w": crop_w, "crop_h": crop_h, "target_width": target_width, "target_height": target_height}), )
NODE_CLASS_MAPPINGS = {
"CLIPTextEncodeSDXLRefiner": CLIPTextEncodeSDXLRefiner,
"CLIPTextEncodeSDXL": CLIPTextEncodeSDXL,
}