mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-10 18:05:16 +00:00
85 lines
3.5 KiB
Python
85 lines
3.5 KiB
Python
import comfy.model_patcher
|
|
import comfy.samplers
|
|
import re
|
|
|
|
|
|
class SkipLayerGuidanceDiT:
|
|
'''
|
|
Enhance guidance towards detailed dtructure by having another set of CFG negative with skipped layers.
|
|
Inspired by Perturbed Attention Guidance (https://arxiv.org/abs/2403.17377)
|
|
Original experimental implementation for SD3 by Dango233@StabilityAI.
|
|
'''
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"model": ("MODEL", ),
|
|
"double_layers": ("STRING", {"default": "7, 8, 9", "multiline": False}),
|
|
"single_layers": ("STRING", {"default": "7, 8, 9", "multiline": False}),
|
|
"scale": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 10.0, "step": 0.1}),
|
|
"start_percent": ("FLOAT", {"default": 0.01, "min": 0.0, "max": 1.0, "step": 0.001}),
|
|
"end_percent": ("FLOAT", {"default": 0.15, "min": 0.0, "max": 1.0, "step": 0.001}),
|
|
"rescaling_scale": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
|
}}
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "skip_guidance"
|
|
EXPERIMENTAL = True
|
|
|
|
DESCRIPTION = "Generic version of SkipLayerGuidance node that can be used on every DiT model."
|
|
|
|
CATEGORY = "advanced/guidance"
|
|
|
|
def skip_guidance(self, model, scale, start_percent, end_percent, double_layers="", single_layers="", rescaling_scale=0):
|
|
# check if layer is comma separated integers
|
|
def skip(args, extra_args):
|
|
return args
|
|
|
|
model_sampling = model.get_model_object("model_sampling")
|
|
sigma_start = model_sampling.percent_to_sigma(start_percent)
|
|
sigma_end = model_sampling.percent_to_sigma(end_percent)
|
|
|
|
double_layers = re.findall(r'\d+', double_layers)
|
|
double_layers = [int(i) for i in double_layers]
|
|
|
|
single_layers = re.findall(r'\d+', single_layers)
|
|
single_layers = [int(i) for i in single_layers]
|
|
|
|
if len(double_layers) == 0 and len(single_layers) == 0:
|
|
return (model, )
|
|
|
|
def post_cfg_function(args):
|
|
model = args["model"]
|
|
cond_pred = args["cond_denoised"]
|
|
cond = args["cond"]
|
|
cfg_result = args["denoised"]
|
|
sigma = args["sigma"]
|
|
x = args["input"]
|
|
model_options = args["model_options"].copy()
|
|
|
|
for layer in double_layers:
|
|
model_options = comfy.model_patcher.set_model_options_patch_replace(model_options, skip, "dit", "double_block", layer)
|
|
|
|
for layer in single_layers:
|
|
model_options = comfy.model_patcher.set_model_options_patch_replace(model_options, skip, "dit", "single_block", layer)
|
|
|
|
model_sampling.percent_to_sigma(start_percent)
|
|
|
|
sigma_ = sigma[0].item()
|
|
if scale > 0 and sigma_ >= sigma_end and sigma_ <= sigma_start:
|
|
(slg,) = comfy.samplers.calc_cond_batch(model, [cond], x, sigma, model_options)
|
|
cfg_result = cfg_result + (cond_pred - slg) * scale
|
|
if rescaling_scale != 0:
|
|
factor = cond_pred.std() / cfg_result.std()
|
|
factor = rescaling_scale * factor + (1 - rescaling_scale)
|
|
cfg_result *= factor
|
|
|
|
return cfg_result
|
|
|
|
m = model.clone()
|
|
m.set_model_sampler_post_cfg_function(post_cfg_function)
|
|
|
|
return (m, )
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"SkipLayerGuidanceDiT": SkipLayerGuidanceDiT,
|
|
}
|