mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
0ee322ec5f
* Added hook_patches to ModelPatcher for weights (model) * Initial changes to calc_cond_batch to eventually support hook_patches * Added current_patcher property to BaseModel * Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature * Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch * Added default_conds support in calc_cond_batch func * Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring * Made CLIP work with hook patches * Added initial hook scheduling nodes, small renaming/refactoring * Fixed MaxSpeed and default conds implementations * Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time * Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node * Initial work on adding 'model_as_lora' lora type to calculate_weight * Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models * Fix incorrect ref to create_hook_patches_clone after moving function * Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks * Added wrappers to ModelPatcher to facilitate standardized function wrapping * Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type * Fix skip_until_exit logic bug breaking injection after first run of model * Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load * Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers * Refactored callbacks+wrappers to allow storing lists by id * Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks * Added get_attachment func on ModelPatcher * Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup * Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref * Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations * Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE) * Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo) * Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending) * Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling * Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances * Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks * Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge * Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes * Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges * Optimized CLIP hook scheduling to treat same strength as same keyframe * Less fragile memory management. * Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict * Fix issue. * Remove useless function. * Prevent and detect some types of memory leaks. * Run garbage collector when switching workflow if needed. * Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py * Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers * Fix issue. * Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming * Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options * Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired * Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality * Fixed existing weight hook_patches (pre-registered) not working properly for CLIP * Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky * Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3) * Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher * Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate * Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True * Fix cached_hook_patches not respecting target_device/memory_counter results * Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches * Remove unnecessary torch.no_grad calls for hook patches * Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists * For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes * Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call * Made encode_from_tokens_scheduled work when no hooks are set on patcher * Small cleanup of comments * Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case * On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs * Allow both FLOATS and FLOAT for floats_strength input * Revert change, does not work * Made patch_hook_weight_to_device respect set_func and convert_func * Make discard_model_sampling True by default * Add changes manually from 'master' so merge conflict resolution goes more smoothly * Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call * Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip * Made nodes in nodes_hooks be marked as experimental (beta) * Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references * Made finalize_default_conds area math consistent with other sampling code * Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks' * Remove a couple old TODO's and a no longer necessary workaround
893 lines
44 KiB
Python
893 lines
44 KiB
Python
from __future__ import annotations
|
|
import torch
|
|
from enum import Enum
|
|
import logging
|
|
|
|
from comfy import model_management
|
|
from comfy.utils import ProgressBar
|
|
from .ldm.models.autoencoder import AutoencoderKL, AutoencodingEngine
|
|
from .ldm.cascade.stage_a import StageA
|
|
from .ldm.cascade.stage_c_coder import StageC_coder
|
|
from .ldm.audio.autoencoder import AudioOobleckVAE
|
|
import comfy.ldm.genmo.vae.model
|
|
import comfy.ldm.lightricks.vae.causal_video_autoencoder
|
|
import yaml
|
|
|
|
import comfy.utils
|
|
|
|
from . import clip_vision
|
|
from . import gligen
|
|
from . import diffusers_convert
|
|
from . import model_detection
|
|
|
|
from . import sd1_clip
|
|
from . import sdxl_clip
|
|
import comfy.text_encoders.sd2_clip
|
|
import comfy.text_encoders.sd3_clip
|
|
import comfy.text_encoders.sa_t5
|
|
import comfy.text_encoders.aura_t5
|
|
import comfy.text_encoders.hydit
|
|
import comfy.text_encoders.flux
|
|
import comfy.text_encoders.long_clipl
|
|
import comfy.text_encoders.genmo
|
|
import comfy.text_encoders.lt
|
|
|
|
import comfy.model_patcher
|
|
import comfy.lora
|
|
import comfy.lora_convert
|
|
import comfy.hooks
|
|
import comfy.t2i_adapter.adapter
|
|
import comfy.taesd.taesd
|
|
|
|
import comfy.ldm.flux.redux
|
|
|
|
def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
|
|
key_map = {}
|
|
if model is not None:
|
|
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
|
|
if clip is not None:
|
|
key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)
|
|
|
|
lora = comfy.lora_convert.convert_lora(lora)
|
|
loaded = comfy.lora.load_lora(lora, key_map)
|
|
if model is not None:
|
|
new_modelpatcher = model.clone()
|
|
k = new_modelpatcher.add_patches(loaded, strength_model)
|
|
else:
|
|
k = ()
|
|
new_modelpatcher = None
|
|
|
|
if clip is not None:
|
|
new_clip = clip.clone()
|
|
k1 = new_clip.add_patches(loaded, strength_clip)
|
|
else:
|
|
k1 = ()
|
|
new_clip = None
|
|
k = set(k)
|
|
k1 = set(k1)
|
|
for x in loaded:
|
|
if (x not in k) and (x not in k1):
|
|
logging.warning("NOT LOADED {}".format(x))
|
|
|
|
return (new_modelpatcher, new_clip)
|
|
|
|
|
|
class CLIP:
|
|
def __init__(self, target=None, embedding_directory=None, no_init=False, tokenizer_data={}, parameters=0, model_options={}):
|
|
if no_init:
|
|
return
|
|
params = target.params.copy()
|
|
clip = target.clip
|
|
tokenizer = target.tokenizer
|
|
|
|
load_device = model_options.get("load_device", model_management.text_encoder_device())
|
|
offload_device = model_options.get("offload_device", model_management.text_encoder_offload_device())
|
|
dtype = model_options.get("dtype", None)
|
|
if dtype is None:
|
|
dtype = model_management.text_encoder_dtype(load_device)
|
|
|
|
params['dtype'] = dtype
|
|
params['device'] = model_options.get("initial_device", model_management.text_encoder_initial_device(load_device, offload_device, parameters * model_management.dtype_size(dtype)))
|
|
params['model_options'] = model_options
|
|
|
|
self.cond_stage_model = clip(**(params))
|
|
|
|
for dt in self.cond_stage_model.dtypes:
|
|
if not model_management.supports_cast(load_device, dt):
|
|
load_device = offload_device
|
|
if params['device'] != offload_device:
|
|
self.cond_stage_model.to(offload_device)
|
|
logging.warning("Had to shift TE back.")
|
|
|
|
self.tokenizer = tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
|
self.patcher = comfy.model_patcher.ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
|
|
self.patcher.hook_mode = comfy.hooks.EnumHookMode.MinVram
|
|
self.patcher.is_clip = True
|
|
self.apply_hooks_to_conds = None
|
|
if params['device'] == load_device:
|
|
model_management.load_models_gpu([self.patcher], force_full_load=True)
|
|
self.layer_idx = None
|
|
self.use_clip_schedule = False
|
|
logging.debug("CLIP model load device: {}, offload device: {}, current: {}".format(load_device, offload_device, params['device']))
|
|
|
|
def clone(self):
|
|
n = CLIP(no_init=True)
|
|
n.patcher = self.patcher.clone()
|
|
n.cond_stage_model = self.cond_stage_model
|
|
n.tokenizer = self.tokenizer
|
|
n.layer_idx = self.layer_idx
|
|
n.use_clip_schedule = self.use_clip_schedule
|
|
n.apply_hooks_to_conds = self.apply_hooks_to_conds
|
|
return n
|
|
|
|
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
|
|
return self.patcher.add_patches(patches, strength_patch, strength_model)
|
|
|
|
def clip_layer(self, layer_idx):
|
|
self.layer_idx = layer_idx
|
|
|
|
def tokenize(self, text, return_word_ids=False):
|
|
return self.tokenizer.tokenize_with_weights(text, return_word_ids)
|
|
|
|
def add_hooks_to_dict(self, pooled_dict: dict[str]):
|
|
if self.apply_hooks_to_conds:
|
|
pooled_dict["hooks"] = self.apply_hooks_to_conds
|
|
return pooled_dict
|
|
|
|
def encode_from_tokens_scheduled(self, tokens, unprojected=False, add_dict: dict[str]={}, show_pbar=True):
|
|
all_cond_pooled: list[tuple[torch.Tensor, dict[str]]] = []
|
|
all_hooks = self.patcher.forced_hooks
|
|
if all_hooks is None or not self.use_clip_schedule:
|
|
# if no hooks or shouldn't use clip schedule, do unscheduled encode_from_tokens and perform add_dict
|
|
return_pooled = "unprojected" if unprojected else True
|
|
pooled_dict = self.encode_from_tokens(tokens, return_pooled=return_pooled, return_dict=True)
|
|
cond = pooled_dict.pop("cond")
|
|
# add/update any keys with the provided add_dict
|
|
pooled_dict.update(add_dict)
|
|
all_cond_pooled.append([cond, pooled_dict])
|
|
else:
|
|
scheduled_keyframes = all_hooks.get_hooks_for_clip_schedule()
|
|
|
|
self.cond_stage_model.reset_clip_options()
|
|
if self.layer_idx is not None:
|
|
self.cond_stage_model.set_clip_options({"layer": self.layer_idx})
|
|
if unprojected:
|
|
self.cond_stage_model.set_clip_options({"projected_pooled": False})
|
|
|
|
self.load_model()
|
|
all_hooks.reset()
|
|
self.patcher.patch_hooks(None)
|
|
if show_pbar:
|
|
pbar = ProgressBar(len(scheduled_keyframes))
|
|
|
|
for scheduled_opts in scheduled_keyframes:
|
|
t_range = scheduled_opts[0]
|
|
# don't bother encoding any conds outside of start_percent and end_percent bounds
|
|
if "start_percent" in add_dict:
|
|
if t_range[1] < add_dict["start_percent"]:
|
|
continue
|
|
if "end_percent" in add_dict:
|
|
if t_range[0] > add_dict["end_percent"]:
|
|
continue
|
|
hooks_keyframes = scheduled_opts[1]
|
|
for hook, keyframe in hooks_keyframes:
|
|
hook.hook_keyframe._current_keyframe = keyframe
|
|
# apply appropriate hooks with values that match new hook_keyframe
|
|
self.patcher.patch_hooks(all_hooks)
|
|
# perform encoding as normal
|
|
o = self.cond_stage_model.encode_token_weights(tokens)
|
|
cond, pooled = o[:2]
|
|
pooled_dict = {"pooled_output": pooled}
|
|
# add clip_start_percent and clip_end_percent in pooled
|
|
pooled_dict["clip_start_percent"] = t_range[0]
|
|
pooled_dict["clip_end_percent"] = t_range[1]
|
|
# add/update any keys with the provided add_dict
|
|
pooled_dict.update(add_dict)
|
|
# add hooks stored on clip
|
|
self.add_hooks_to_dict(pooled_dict)
|
|
all_cond_pooled.append([cond, pooled_dict])
|
|
if show_pbar:
|
|
pbar.update(1)
|
|
model_management.throw_exception_if_processing_interrupted()
|
|
all_hooks.reset()
|
|
return all_cond_pooled
|
|
|
|
def encode_from_tokens(self, tokens, return_pooled=False, return_dict=False):
|
|
self.cond_stage_model.reset_clip_options()
|
|
|
|
if self.layer_idx is not None:
|
|
self.cond_stage_model.set_clip_options({"layer": self.layer_idx})
|
|
|
|
if return_pooled == "unprojected":
|
|
self.cond_stage_model.set_clip_options({"projected_pooled": False})
|
|
|
|
self.load_model()
|
|
o = self.cond_stage_model.encode_token_weights(tokens)
|
|
cond, pooled = o[:2]
|
|
if return_dict:
|
|
out = {"cond": cond, "pooled_output": pooled}
|
|
if len(o) > 2:
|
|
for k in o[2]:
|
|
out[k] = o[2][k]
|
|
self.add_hooks_to_dict(out)
|
|
return out
|
|
|
|
if return_pooled:
|
|
return cond, pooled
|
|
return cond
|
|
|
|
def encode(self, text):
|
|
tokens = self.tokenize(text)
|
|
return self.encode_from_tokens(tokens)
|
|
|
|
def load_sd(self, sd, full_model=False):
|
|
if full_model:
|
|
return self.cond_stage_model.load_state_dict(sd, strict=False)
|
|
else:
|
|
return self.cond_stage_model.load_sd(sd)
|
|
|
|
def get_sd(self):
|
|
sd_clip = self.cond_stage_model.state_dict()
|
|
sd_tokenizer = self.tokenizer.state_dict()
|
|
for k in sd_tokenizer:
|
|
sd_clip[k] = sd_tokenizer[k]
|
|
return sd_clip
|
|
|
|
def load_model(self):
|
|
model_management.load_model_gpu(self.patcher)
|
|
return self.patcher
|
|
|
|
def get_key_patches(self):
|
|
return self.patcher.get_key_patches()
|
|
|
|
class VAE:
|
|
def __init__(self, sd=None, device=None, config=None, dtype=None):
|
|
if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
|
|
sd = diffusers_convert.convert_vae_state_dict(sd)
|
|
|
|
self.memory_used_encode = lambda shape, dtype: (1767 * shape[2] * shape[3]) * model_management.dtype_size(dtype) #These are for AutoencoderKL and need tweaking (should be lower)
|
|
self.memory_used_decode = lambda shape, dtype: (2178 * shape[2] * shape[3] * 64) * model_management.dtype_size(dtype)
|
|
self.downscale_ratio = 8
|
|
self.upscale_ratio = 8
|
|
self.latent_channels = 4
|
|
self.latent_dim = 2
|
|
self.output_channels = 3
|
|
self.process_input = lambda image: image * 2.0 - 1.0
|
|
self.process_output = lambda image: torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)
|
|
self.working_dtypes = [torch.bfloat16, torch.float32]
|
|
|
|
if config is None:
|
|
if "decoder.mid.block_1.mix_factor" in sd:
|
|
encoder_config = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
|
|
decoder_config = encoder_config.copy()
|
|
decoder_config["video_kernel_size"] = [3, 1, 1]
|
|
decoder_config["alpha"] = 0.0
|
|
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"},
|
|
encoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Encoder", 'params': encoder_config},
|
|
decoder_config={'target': "comfy.ldm.modules.temporal_ae.VideoDecoder", 'params': decoder_config})
|
|
elif "taesd_decoder.1.weight" in sd:
|
|
self.latent_channels = sd["taesd_decoder.1.weight"].shape[1]
|
|
self.first_stage_model = comfy.taesd.taesd.TAESD(latent_channels=self.latent_channels)
|
|
elif "vquantizer.codebook.weight" in sd: #VQGan: stage a of stable cascade
|
|
self.first_stage_model = StageA()
|
|
self.downscale_ratio = 4
|
|
self.upscale_ratio = 4
|
|
#TODO
|
|
#self.memory_used_encode
|
|
#self.memory_used_decode
|
|
self.process_input = lambda image: image
|
|
self.process_output = lambda image: image
|
|
elif "backbone.1.0.block.0.1.num_batches_tracked" in sd: #effnet: encoder for stage c latent of stable cascade
|
|
self.first_stage_model = StageC_coder()
|
|
self.downscale_ratio = 32
|
|
self.latent_channels = 16
|
|
new_sd = {}
|
|
for k in sd:
|
|
new_sd["encoder.{}".format(k)] = sd[k]
|
|
sd = new_sd
|
|
elif "blocks.11.num_batches_tracked" in sd: #previewer: decoder for stage c latent of stable cascade
|
|
self.first_stage_model = StageC_coder()
|
|
self.latent_channels = 16
|
|
new_sd = {}
|
|
for k in sd:
|
|
new_sd["previewer.{}".format(k)] = sd[k]
|
|
sd = new_sd
|
|
elif "encoder.backbone.1.0.block.0.1.num_batches_tracked" in sd: #combined effnet and previewer for stable cascade
|
|
self.first_stage_model = StageC_coder()
|
|
self.downscale_ratio = 32
|
|
self.latent_channels = 16
|
|
elif "decoder.conv_in.weight" in sd:
|
|
#default SD1.x/SD2.x VAE parameters
|
|
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
|
|
|
|
if 'encoder.down.2.downsample.conv.weight' not in sd and 'decoder.up.3.upsample.conv.weight' not in sd: #Stable diffusion x4 upscaler VAE
|
|
ddconfig['ch_mult'] = [1, 2, 4]
|
|
self.downscale_ratio = 4
|
|
self.upscale_ratio = 4
|
|
|
|
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1]
|
|
if 'quant_conv.weight' in sd:
|
|
self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=4)
|
|
else:
|
|
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"},
|
|
encoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Encoder", 'params': ddconfig},
|
|
decoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Decoder", 'params': ddconfig})
|
|
elif "decoder.layers.1.layers.0.beta" in sd:
|
|
self.first_stage_model = AudioOobleckVAE()
|
|
self.memory_used_encode = lambda shape, dtype: (1000 * shape[2]) * model_management.dtype_size(dtype)
|
|
self.memory_used_decode = lambda shape, dtype: (1000 * shape[2] * 2048) * model_management.dtype_size(dtype)
|
|
self.latent_channels = 64
|
|
self.output_channels = 2
|
|
self.upscale_ratio = 2048
|
|
self.downscale_ratio = 2048
|
|
self.latent_dim = 1
|
|
self.process_output = lambda audio: audio
|
|
self.process_input = lambda audio: audio
|
|
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
|
|
elif "blocks.2.blocks.3.stack.5.weight" in sd or "decoder.blocks.2.blocks.3.stack.5.weight" in sd or "layers.4.layers.1.attn_block.attn.qkv.weight" in sd or "encoder.layers.4.layers.1.attn_block.attn.qkv.weight" in sd: #genmo mochi vae
|
|
if "blocks.2.blocks.3.stack.5.weight" in sd:
|
|
sd = comfy.utils.state_dict_prefix_replace(sd, {"": "decoder."})
|
|
if "layers.4.layers.1.attn_block.attn.qkv.weight" in sd:
|
|
sd = comfy.utils.state_dict_prefix_replace(sd, {"": "encoder."})
|
|
self.first_stage_model = comfy.ldm.genmo.vae.model.VideoVAE()
|
|
self.latent_channels = 12
|
|
self.latent_dim = 3
|
|
self.memory_used_decode = lambda shape, dtype: (1000 * shape[2] * shape[3] * shape[4] * (6 * 8 * 8)) * model_management.dtype_size(dtype)
|
|
self.memory_used_encode = lambda shape, dtype: (1.5 * max(shape[2], 7) * shape[3] * shape[4] * (6 * 8 * 8)) * model_management.dtype_size(dtype)
|
|
self.upscale_ratio = (lambda a: max(0, a * 6 - 5), 8, 8)
|
|
self.working_dtypes = [torch.float16, torch.float32]
|
|
elif "decoder.up_blocks.0.res_blocks.0.conv1.conv.weight" in sd: #lightricks ltxv
|
|
self.first_stage_model = comfy.ldm.lightricks.vae.causal_video_autoencoder.VideoVAE()
|
|
self.latent_channels = 128
|
|
self.latent_dim = 3
|
|
self.memory_used_decode = lambda shape, dtype: (900 * shape[2] * shape[3] * shape[4] * (8 * 8 * 8)) * model_management.dtype_size(dtype)
|
|
self.memory_used_encode = lambda shape, dtype: (70 * max(shape[2], 7) * shape[3] * shape[4]) * model_management.dtype_size(dtype)
|
|
self.upscale_ratio = (lambda a: max(0, a * 8 - 7), 32, 32)
|
|
self.working_dtypes = [torch.bfloat16, torch.float32]
|
|
else:
|
|
logging.warning("WARNING: No VAE weights detected, VAE not initalized.")
|
|
self.first_stage_model = None
|
|
return
|
|
else:
|
|
self.first_stage_model = AutoencoderKL(**(config['params']))
|
|
self.first_stage_model = self.first_stage_model.eval()
|
|
|
|
m, u = self.first_stage_model.load_state_dict(sd, strict=False)
|
|
if len(m) > 0:
|
|
logging.warning("Missing VAE keys {}".format(m))
|
|
|
|
if len(u) > 0:
|
|
logging.debug("Leftover VAE keys {}".format(u))
|
|
|
|
if device is None:
|
|
device = model_management.vae_device()
|
|
self.device = device
|
|
offload_device = model_management.vae_offload_device()
|
|
if dtype is None:
|
|
dtype = model_management.vae_dtype(self.device, self.working_dtypes)
|
|
self.vae_dtype = dtype
|
|
self.first_stage_model.to(self.vae_dtype)
|
|
self.output_device = model_management.intermediate_device()
|
|
|
|
self.patcher = comfy.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device)
|
|
logging.debug("VAE load device: {}, offload device: {}, dtype: {}".format(self.device, offload_device, self.vae_dtype))
|
|
|
|
def vae_encode_crop_pixels(self, pixels):
|
|
dims = pixels.shape[1:-1]
|
|
for d in range(len(dims)):
|
|
x = (dims[d] // self.downscale_ratio) * self.downscale_ratio
|
|
x_offset = (dims[d] % self.downscale_ratio) // 2
|
|
if x != dims[d]:
|
|
pixels = pixels.narrow(d + 1, x_offset, x)
|
|
return pixels
|
|
|
|
def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
|
|
steps = samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
|
|
steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
|
steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
|
pbar = comfy.utils.ProgressBar(steps)
|
|
|
|
decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float()
|
|
output = self.process_output(
|
|
(comfy.utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = self.upscale_ratio, output_device=self.output_device, pbar = pbar) +
|
|
comfy.utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = self.upscale_ratio, output_device=self.output_device, pbar = pbar) +
|
|
comfy.utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = self.upscale_ratio, output_device=self.output_device, pbar = pbar))
|
|
/ 3.0)
|
|
return output
|
|
|
|
def decode_tiled_1d(self, samples, tile_x=128, overlap=32):
|
|
decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float()
|
|
return comfy.utils.tiled_scale_multidim(samples, decode_fn, tile=(tile_x,), overlap=overlap, upscale_amount=self.upscale_ratio, out_channels=self.output_channels, output_device=self.output_device)
|
|
|
|
def decode_tiled_3d(self, samples, tile_t=999, tile_x=32, tile_y=32, overlap=(1, 8, 8)):
|
|
decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float()
|
|
return self.process_output(comfy.utils.tiled_scale_multidim(samples, decode_fn, tile=(tile_t, tile_x, tile_y), overlap=overlap, upscale_amount=self.upscale_ratio, out_channels=self.output_channels, output_device=self.output_device))
|
|
|
|
def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
|
|
steps = pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
|
|
steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
|
steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
|
pbar = comfy.utils.ProgressBar(steps)
|
|
|
|
encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float()
|
|
samples = comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
|
|
samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
|
|
samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
|
|
samples /= 3.0
|
|
return samples
|
|
|
|
def encode_tiled_1d(self, samples, tile_x=128 * 2048, overlap=32 * 2048):
|
|
encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float()
|
|
return comfy.utils.tiled_scale_multidim(samples, encode_fn, tile=(tile_x,), overlap=overlap, upscale_amount=(1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device)
|
|
|
|
def decode(self, samples_in):
|
|
pixel_samples = None
|
|
try:
|
|
memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype)
|
|
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
|
|
free_memory = model_management.get_free_memory(self.device)
|
|
batch_number = int(free_memory / memory_used)
|
|
batch_number = max(1, batch_number)
|
|
|
|
for x in range(0, samples_in.shape[0], batch_number):
|
|
samples = samples_in[x:x+batch_number].to(self.vae_dtype).to(self.device)
|
|
out = self.process_output(self.first_stage_model.decode(samples).to(self.output_device).float())
|
|
if pixel_samples is None:
|
|
pixel_samples = torch.empty((samples_in.shape[0],) + tuple(out.shape[1:]), device=self.output_device)
|
|
pixel_samples[x:x+batch_number] = out
|
|
except model_management.OOM_EXCEPTION as e:
|
|
logging.warning("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
|
|
dims = samples_in.ndim - 2
|
|
if dims == 1:
|
|
pixel_samples = self.decode_tiled_1d(samples_in)
|
|
elif dims == 2:
|
|
pixel_samples = self.decode_tiled_(samples_in)
|
|
elif dims == 3:
|
|
tile = 256 // self.spacial_compression_decode()
|
|
overlap = tile // 4
|
|
pixel_samples = self.decode_tiled_3d(samples_in, tile_x=tile, tile_y=tile, overlap=(1, overlap, overlap))
|
|
|
|
pixel_samples = pixel_samples.to(self.output_device).movedim(1,-1)
|
|
return pixel_samples
|
|
|
|
def decode_tiled(self, samples, tile_x=None, tile_y=None, overlap=None):
|
|
memory_used = self.memory_used_decode(samples.shape, self.vae_dtype) #TODO: calculate mem required for tile
|
|
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
|
|
dims = samples.ndim - 2
|
|
args = {}
|
|
if tile_x is not None:
|
|
args["tile_x"] = tile_x
|
|
if tile_y is not None:
|
|
args["tile_y"] = tile_y
|
|
if overlap is not None:
|
|
args["overlap"] = overlap
|
|
|
|
if dims == 1:
|
|
args.pop("tile_y")
|
|
output = self.decode_tiled_1d(samples, **args)
|
|
elif dims == 2:
|
|
output = self.decode_tiled_(samples, **args)
|
|
elif dims == 3:
|
|
output = self.decode_tiled_3d(samples, **args)
|
|
return output.movedim(1, -1)
|
|
|
|
def encode(self, pixel_samples):
|
|
pixel_samples = self.vae_encode_crop_pixels(pixel_samples)
|
|
pixel_samples = pixel_samples.movedim(-1, 1)
|
|
if self.latent_dim == 3:
|
|
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
|
|
try:
|
|
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype)
|
|
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
|
|
free_memory = model_management.get_free_memory(self.device)
|
|
batch_number = int(free_memory / max(1, memory_used))
|
|
batch_number = max(1, batch_number)
|
|
samples = None
|
|
for x in range(0, pixel_samples.shape[0], batch_number):
|
|
pixels_in = self.process_input(pixel_samples[x:x + batch_number]).to(self.vae_dtype).to(self.device)
|
|
out = self.first_stage_model.encode(pixels_in).to(self.output_device).float()
|
|
if samples is None:
|
|
samples = torch.empty((pixel_samples.shape[0],) + tuple(out.shape[1:]), device=self.output_device)
|
|
samples[x:x + batch_number] = out
|
|
|
|
except model_management.OOM_EXCEPTION as e:
|
|
logging.warning("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
|
|
if len(pixel_samples.shape) == 3:
|
|
samples = self.encode_tiled_1d(pixel_samples)
|
|
else:
|
|
samples = self.encode_tiled_(pixel_samples)
|
|
|
|
return samples
|
|
|
|
def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
|
|
pixel_samples = self.vae_encode_crop_pixels(pixel_samples)
|
|
model_management.load_model_gpu(self.patcher)
|
|
pixel_samples = pixel_samples.movedim(-1,1)
|
|
samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap)
|
|
return samples
|
|
|
|
def get_sd(self):
|
|
return self.first_stage_model.state_dict()
|
|
|
|
def spacial_compression_decode(self):
|
|
try:
|
|
return self.upscale_ratio[-1]
|
|
except:
|
|
return self.upscale_ratio
|
|
|
|
class StyleModel:
|
|
def __init__(self, model, device="cpu"):
|
|
self.model = model
|
|
|
|
def get_cond(self, input):
|
|
return self.model(input.last_hidden_state)
|
|
|
|
|
|
def load_style_model(ckpt_path):
|
|
model_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
|
|
keys = model_data.keys()
|
|
if "style_embedding" in keys:
|
|
model = comfy.t2i_adapter.adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
|
|
elif "redux_down.weight" in keys:
|
|
model = comfy.ldm.flux.redux.ReduxImageEncoder()
|
|
else:
|
|
raise Exception("invalid style model {}".format(ckpt_path))
|
|
model.load_state_dict(model_data)
|
|
return StyleModel(model)
|
|
|
|
class CLIPType(Enum):
|
|
STABLE_DIFFUSION = 1
|
|
STABLE_CASCADE = 2
|
|
SD3 = 3
|
|
STABLE_AUDIO = 4
|
|
HUNYUAN_DIT = 5
|
|
FLUX = 6
|
|
MOCHI = 7
|
|
LTXV = 8
|
|
|
|
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
|
|
clip_data = []
|
|
for p in ckpt_paths:
|
|
clip_data.append(comfy.utils.load_torch_file(p, safe_load=True))
|
|
return load_text_encoder_state_dicts(clip_data, embedding_directory=embedding_directory, clip_type=clip_type, model_options=model_options)
|
|
|
|
|
|
class TEModel(Enum):
|
|
CLIP_L = 1
|
|
CLIP_H = 2
|
|
CLIP_G = 3
|
|
T5_XXL = 4
|
|
T5_XL = 5
|
|
T5_BASE = 6
|
|
|
|
def detect_te_model(sd):
|
|
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
|
|
return TEModel.CLIP_G
|
|
if "text_model.encoder.layers.22.mlp.fc1.weight" in sd:
|
|
return TEModel.CLIP_H
|
|
if "text_model.encoder.layers.0.mlp.fc1.weight" in sd:
|
|
return TEModel.CLIP_L
|
|
if "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" in sd:
|
|
weight = sd["encoder.block.23.layer.1.DenseReluDense.wi_1.weight"]
|
|
if weight.shape[-1] == 4096:
|
|
return TEModel.T5_XXL
|
|
elif weight.shape[-1] == 2048:
|
|
return TEModel.T5_XL
|
|
if "encoder.block.0.layer.0.SelfAttention.k.weight" in sd:
|
|
return TEModel.T5_BASE
|
|
return None
|
|
|
|
|
|
def t5xxl_detect(clip_data):
|
|
weight_name = "encoder.block.23.layer.1.DenseReluDense.wi_1.weight"
|
|
|
|
for sd in clip_data:
|
|
if weight_name in sd:
|
|
return comfy.text_encoders.sd3_clip.t5_xxl_detect(sd)
|
|
|
|
return {}
|
|
|
|
|
|
def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
|
|
clip_data = state_dicts
|
|
|
|
class EmptyClass:
|
|
pass
|
|
|
|
for i in range(len(clip_data)):
|
|
if "transformer.resblocks.0.ln_1.weight" in clip_data[i]:
|
|
clip_data[i] = comfy.utils.clip_text_transformers_convert(clip_data[i], "", "")
|
|
else:
|
|
if "text_projection" in clip_data[i]:
|
|
clip_data[i]["text_projection.weight"] = clip_data[i]["text_projection"].transpose(0, 1) #old models saved with the CLIPSave node
|
|
|
|
clip_target = EmptyClass()
|
|
clip_target.params = {}
|
|
if len(clip_data) == 1:
|
|
te_model = detect_te_model(clip_data[0])
|
|
if te_model == TEModel.CLIP_G:
|
|
if clip_type == CLIPType.STABLE_CASCADE:
|
|
clip_target.clip = sdxl_clip.StableCascadeClipModel
|
|
clip_target.tokenizer = sdxl_clip.StableCascadeTokenizer
|
|
elif clip_type == CLIPType.SD3:
|
|
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=True, t5=False)
|
|
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
|
else:
|
|
clip_target.clip = sdxl_clip.SDXLRefinerClipModel
|
|
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
|
|
elif te_model == TEModel.CLIP_H:
|
|
clip_target.clip = comfy.text_encoders.sd2_clip.SD2ClipModel
|
|
clip_target.tokenizer = comfy.text_encoders.sd2_clip.SD2Tokenizer
|
|
elif te_model == TEModel.T5_XXL:
|
|
if clip_type == CLIPType.SD3:
|
|
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=False, t5=True, **t5xxl_detect(clip_data))
|
|
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
|
elif clip_type == CLIPType.LTXV:
|
|
clip_target.clip = comfy.text_encoders.lt.ltxv_te(**t5xxl_detect(clip_data))
|
|
clip_target.tokenizer = comfy.text_encoders.lt.LTXVT5Tokenizer
|
|
else: #CLIPType.MOCHI
|
|
clip_target.clip = comfy.text_encoders.genmo.mochi_te(**t5xxl_detect(clip_data))
|
|
clip_target.tokenizer = comfy.text_encoders.genmo.MochiT5Tokenizer
|
|
elif te_model == TEModel.T5_XL:
|
|
clip_target.clip = comfy.text_encoders.aura_t5.AuraT5Model
|
|
clip_target.tokenizer = comfy.text_encoders.aura_t5.AuraT5Tokenizer
|
|
elif te_model == TEModel.T5_BASE:
|
|
clip_target.clip = comfy.text_encoders.sa_t5.SAT5Model
|
|
clip_target.tokenizer = comfy.text_encoders.sa_t5.SAT5Tokenizer
|
|
else:
|
|
if clip_type == CLIPType.SD3:
|
|
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=True, clip_g=False, t5=False)
|
|
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
|
else:
|
|
clip_target.clip = sd1_clip.SD1ClipModel
|
|
clip_target.tokenizer = sd1_clip.SD1Tokenizer
|
|
elif len(clip_data) == 2:
|
|
if clip_type == CLIPType.SD3:
|
|
te_models = [detect_te_model(clip_data[0]), detect_te_model(clip_data[1])]
|
|
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=TEModel.CLIP_L in te_models, clip_g=TEModel.CLIP_G in te_models, t5=TEModel.T5_XXL in te_models, **t5xxl_detect(clip_data))
|
|
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
|
elif clip_type == CLIPType.HUNYUAN_DIT:
|
|
clip_target.clip = comfy.text_encoders.hydit.HyditModel
|
|
clip_target.tokenizer = comfy.text_encoders.hydit.HyditTokenizer
|
|
elif clip_type == CLIPType.FLUX:
|
|
clip_target.clip = comfy.text_encoders.flux.flux_clip(**t5xxl_detect(clip_data))
|
|
clip_target.tokenizer = comfy.text_encoders.flux.FluxTokenizer
|
|
else:
|
|
clip_target.clip = sdxl_clip.SDXLClipModel
|
|
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
|
|
elif len(clip_data) == 3:
|
|
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(**t5xxl_detect(clip_data))
|
|
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
|
|
|
parameters = 0
|
|
tokenizer_data = {}
|
|
for c in clip_data:
|
|
parameters += comfy.utils.calculate_parameters(c)
|
|
tokenizer_data, model_options = comfy.text_encoders.long_clipl.model_options_long_clip(c, tokenizer_data, model_options)
|
|
|
|
clip = CLIP(clip_target, embedding_directory=embedding_directory, parameters=parameters, tokenizer_data=tokenizer_data, model_options=model_options)
|
|
for c in clip_data:
|
|
m, u = clip.load_sd(c)
|
|
if len(m) > 0:
|
|
logging.warning("clip missing: {}".format(m))
|
|
|
|
if len(u) > 0:
|
|
logging.debug("clip unexpected: {}".format(u))
|
|
return clip
|
|
|
|
def load_gligen(ckpt_path):
|
|
data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
|
|
model = gligen.load_gligen(data)
|
|
if model_management.should_use_fp16():
|
|
model = model.half()
|
|
return comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
|
|
|
|
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
|
|
logging.warning("Warning: The load checkpoint with config function is deprecated and will eventually be removed, please use the other one.")
|
|
model, clip, vae, _ = load_checkpoint_guess_config(ckpt_path, output_vae=output_vae, output_clip=output_clip, output_clipvision=False, embedding_directory=embedding_directory, output_model=True)
|
|
#TODO: this function is a mess and should be removed eventually
|
|
if config is None:
|
|
with open(config_path, 'r') as stream:
|
|
config = yaml.safe_load(stream)
|
|
model_config_params = config['model']['params']
|
|
clip_config = model_config_params['cond_stage_config']
|
|
scale_factor = model_config_params['scale_factor']
|
|
|
|
if "parameterization" in model_config_params:
|
|
if model_config_params["parameterization"] == "v":
|
|
m = model.clone()
|
|
class ModelSamplingAdvanced(comfy.model_sampling.ModelSamplingDiscrete, comfy.model_sampling.V_PREDICTION):
|
|
pass
|
|
m.add_object_patch("model_sampling", ModelSamplingAdvanced(model.model.model_config))
|
|
model = m
|
|
|
|
layer_idx = clip_config.get("params", {}).get("layer_idx", None)
|
|
if layer_idx is not None:
|
|
clip.clip_layer(layer_idx)
|
|
|
|
return (model, clip, vae)
|
|
|
|
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}, te_model_options={}):
|
|
sd = comfy.utils.load_torch_file(ckpt_path)
|
|
out = load_state_dict_guess_config(sd, output_vae, output_clip, output_clipvision, embedding_directory, output_model, model_options, te_model_options=te_model_options)
|
|
if out is None:
|
|
raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
|
|
return out
|
|
|
|
def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}, te_model_options={}):
|
|
clip = None
|
|
clipvision = None
|
|
vae = None
|
|
model = None
|
|
model_patcher = None
|
|
|
|
diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd)
|
|
parameters = comfy.utils.calculate_parameters(sd, diffusion_model_prefix)
|
|
weight_dtype = comfy.utils.weight_dtype(sd, diffusion_model_prefix)
|
|
load_device = model_management.get_torch_device()
|
|
|
|
model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix)
|
|
if model_config is None:
|
|
return None
|
|
|
|
unet_weight_dtype = list(model_config.supported_inference_dtypes)
|
|
if weight_dtype is not None and model_config.scaled_fp8 is None:
|
|
unet_weight_dtype.append(weight_dtype)
|
|
|
|
model_config.custom_operations = model_options.get("custom_operations", None)
|
|
unet_dtype = model_options.get("dtype", model_options.get("weight_dtype", None))
|
|
|
|
if unet_dtype is None:
|
|
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype)
|
|
|
|
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
|
|
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
|
|
|
|
if model_config.clip_vision_prefix is not None:
|
|
if output_clipvision:
|
|
clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)
|
|
|
|
if output_model:
|
|
inital_load_device = model_management.unet_inital_load_device(parameters, unet_dtype)
|
|
model = model_config.get_model(sd, diffusion_model_prefix, device=inital_load_device)
|
|
model.load_model_weights(sd, diffusion_model_prefix)
|
|
|
|
if output_vae:
|
|
vae_sd = comfy.utils.state_dict_prefix_replace(sd, {k: "" for k in model_config.vae_key_prefix}, filter_keys=True)
|
|
vae_sd = model_config.process_vae_state_dict(vae_sd)
|
|
vae = VAE(sd=vae_sd)
|
|
|
|
if output_clip:
|
|
clip_target = model_config.clip_target(state_dict=sd)
|
|
if clip_target is not None:
|
|
clip_sd = model_config.process_clip_state_dict(sd)
|
|
if len(clip_sd) > 0:
|
|
parameters = comfy.utils.calculate_parameters(clip_sd)
|
|
clip = CLIP(clip_target, embedding_directory=embedding_directory, tokenizer_data=clip_sd, parameters=parameters, model_options=te_model_options)
|
|
m, u = clip.load_sd(clip_sd, full_model=True)
|
|
if len(m) > 0:
|
|
m_filter = list(filter(lambda a: ".logit_scale" not in a and ".transformer.text_projection.weight" not in a, m))
|
|
if len(m_filter) > 0:
|
|
logging.warning("clip missing: {}".format(m))
|
|
else:
|
|
logging.debug("clip missing: {}".format(m))
|
|
|
|
if len(u) > 0:
|
|
logging.debug("clip unexpected {}:".format(u))
|
|
else:
|
|
logging.warning("no CLIP/text encoder weights in checkpoint, the text encoder model will not be loaded.")
|
|
|
|
left_over = sd.keys()
|
|
if len(left_over) > 0:
|
|
logging.debug("left over keys: {}".format(left_over))
|
|
|
|
if output_model:
|
|
model_patcher = comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device())
|
|
if inital_load_device != torch.device("cpu"):
|
|
logging.info("loaded straight to GPU")
|
|
model_management.load_models_gpu([model_patcher], force_full_load=True)
|
|
|
|
return (model_patcher, clip, vae, clipvision)
|
|
|
|
|
|
def load_diffusion_model_state_dict(sd, model_options={}): #load unet in diffusers or regular format
|
|
dtype = model_options.get("dtype", None)
|
|
|
|
#Allow loading unets from checkpoint files
|
|
diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd)
|
|
temp_sd = comfy.utils.state_dict_prefix_replace(sd, {diffusion_model_prefix: ""}, filter_keys=True)
|
|
if len(temp_sd) > 0:
|
|
sd = temp_sd
|
|
|
|
parameters = comfy.utils.calculate_parameters(sd)
|
|
weight_dtype = comfy.utils.weight_dtype(sd)
|
|
|
|
load_device = model_management.get_torch_device()
|
|
model_config = model_detection.model_config_from_unet(sd, "")
|
|
|
|
if model_config is not None:
|
|
new_sd = sd
|
|
else:
|
|
new_sd = model_detection.convert_diffusers_mmdit(sd, "")
|
|
if new_sd is not None: #diffusers mmdit
|
|
model_config = model_detection.model_config_from_unet(new_sd, "")
|
|
if model_config is None:
|
|
return None
|
|
else: #diffusers unet
|
|
model_config = model_detection.model_config_from_diffusers_unet(sd)
|
|
if model_config is None:
|
|
return None
|
|
|
|
diffusers_keys = comfy.utils.unet_to_diffusers(model_config.unet_config)
|
|
|
|
new_sd = {}
|
|
for k in diffusers_keys:
|
|
if k in sd:
|
|
new_sd[diffusers_keys[k]] = sd.pop(k)
|
|
else:
|
|
logging.warning("{} {}".format(diffusers_keys[k], k))
|
|
|
|
offload_device = model_management.unet_offload_device()
|
|
unet_weight_dtype = list(model_config.supported_inference_dtypes)
|
|
if weight_dtype is not None and model_config.scaled_fp8 is None:
|
|
unet_weight_dtype.append(weight_dtype)
|
|
|
|
if dtype is None:
|
|
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype)
|
|
else:
|
|
unet_dtype = dtype
|
|
|
|
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
|
|
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
|
|
model_config.custom_operations = model_options.get("custom_operations", model_config.custom_operations)
|
|
if model_options.get("fp8_optimizations", False):
|
|
model_config.optimizations["fp8"] = True
|
|
|
|
model = model_config.get_model(new_sd, "")
|
|
model = model.to(offload_device)
|
|
model.load_model_weights(new_sd, "")
|
|
left_over = sd.keys()
|
|
if len(left_over) > 0:
|
|
logging.info("left over keys in unet: {}".format(left_over))
|
|
return comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=offload_device)
|
|
|
|
|
|
def load_diffusion_model(unet_path, model_options={}):
|
|
sd = comfy.utils.load_torch_file(unet_path)
|
|
model = load_diffusion_model_state_dict(sd, model_options=model_options)
|
|
if model is None:
|
|
logging.error("ERROR UNSUPPORTED UNET {}".format(unet_path))
|
|
raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path))
|
|
return model
|
|
|
|
def load_unet(unet_path, dtype=None):
|
|
print("WARNING: the load_unet function has been deprecated and will be removed please switch to: load_diffusion_model")
|
|
return load_diffusion_model(unet_path, model_options={"dtype": dtype})
|
|
|
|
def load_unet_state_dict(sd, dtype=None):
|
|
print("WARNING: the load_unet_state_dict function has been deprecated and will be removed please switch to: load_diffusion_model_state_dict")
|
|
return load_diffusion_model_state_dict(sd, model_options={"dtype": dtype})
|
|
|
|
def save_checkpoint(output_path, model, clip=None, vae=None, clip_vision=None, metadata=None, extra_keys={}):
|
|
clip_sd = None
|
|
load_models = [model]
|
|
if clip is not None:
|
|
load_models.append(clip.load_model())
|
|
clip_sd = clip.get_sd()
|
|
vae_sd = None
|
|
if vae is not None:
|
|
vae_sd = vae.get_sd()
|
|
|
|
model_management.load_models_gpu(load_models, force_patch_weights=True)
|
|
clip_vision_sd = clip_vision.get_sd() if clip_vision is not None else None
|
|
sd = model.model.state_dict_for_saving(clip_sd, vae_sd, clip_vision_sd)
|
|
for k in extra_keys:
|
|
sd[k] = extra_keys[k]
|
|
|
|
for k in sd:
|
|
t = sd[k]
|
|
if not t.is_contiguous():
|
|
sd[k] = t.contiguous()
|
|
|
|
comfy.utils.save_torch_file(sd, output_path, metadata=metadata)
|