ComfyUI/comfy/sd2_clip.py
2023-01-16 22:37:14 -05:00

90 lines
2.8 KiB
Python

import sd1_clip
import open_clip
import torch
class SD2ClipModel(torch.nn.Module, sd1_clip.ClipTokenWeightEncoder):
"""
Uses the OpenCLIP transformer encoder for text
"""
LAYERS = [
#"pooled",
"last",
"penultimate",
"hidden"
]
#version="laion2b_s32b_b79k"
def __init__(self, arch="ViT-H-14", device="cpu", max_length=77,
freeze=True, layer="penultimate", layer_idx=None):
super().__init__()
assert layer in self.LAYERS
model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'))
del model.visual
self.model = model
self.device = device
self.max_length = max_length
self.empty_tokens = [[49406] + [49407] + [0] * 75]
if freeze:
self.freeze()
self.layer = layer
if self.layer == "last":
self.layer_idx = 0
elif self.layer == "penultimate":
self.layer_idx = 1
elif self.layer == "hidden":
assert layer_idx is not None
assert abs(layer_idx) < 24
self.clip_layer(layer_idx)
else:
raise NotImplementedError()
def freeze(self):
self.model = self.model.eval()
for param in self.parameters():
param.requires_grad = False
def clip_layer(self, layer_idx):
#layer_idx should have the same logic as the one for SD1
if abs(layer_idx) >= 24:
self.layer_idx = 0
else:
if layer_idx < 0:
self.layer_idx = -(layer_idx + 1)
else:
self.layer_idx = 24 - (layer_idx + 1)
def forward(self, tokens):
tokens = torch.LongTensor(tokens).to(self.device)
z = self.encode_with_transformer(tokens)
return z
def encode_with_transformer(self, tokens):
x = self.model.token_embedding(tokens) # [batch_size, n_ctx, d_model]
x = x + self.model.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.model.ln_final(x)
return x
def text_transformer_forward(self, x: torch.Tensor, attn_mask = None):
for i, r in enumerate(self.model.transformer.resblocks):
if i == len(self.model.transformer.resblocks) - self.layer_idx:
break
if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint(r, x, attn_mask)
else:
x = r(x, attn_mask=attn_mask)
return x
def encode(self, tokens):
return self(tokens)
class SD2Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, tokenizer_path=None):
super().__init__(tokenizer_path, pad_with_end=False)