mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
1007 lines
49 KiB
Python
1007 lines
49 KiB
Python
from __future__ import annotations
|
|
import torch
|
|
from enum import Enum
|
|
import logging
|
|
|
|
from comfy import model_management
|
|
from comfy.utils import ProgressBar
|
|
from .ldm.models.autoencoder import AutoencoderKL, AutoencodingEngine
|
|
from .ldm.cascade.stage_a import StageA
|
|
from .ldm.cascade.stage_c_coder import StageC_coder
|
|
from .ldm.audio.autoencoder import AudioOobleckVAE
|
|
import comfy.ldm.genmo.vae.model
|
|
import comfy.ldm.lightricks.vae.causal_video_autoencoder
|
|
import yaml
|
|
import math
|
|
|
|
import comfy.utils
|
|
|
|
from . import clip_vision
|
|
from . import gligen
|
|
from . import diffusers_convert
|
|
from . import model_detection
|
|
|
|
from . import sd1_clip
|
|
from . import sdxl_clip
|
|
import comfy.text_encoders.sd2_clip
|
|
import comfy.text_encoders.sd3_clip
|
|
import comfy.text_encoders.sa_t5
|
|
import comfy.text_encoders.aura_t5
|
|
import comfy.text_encoders.pixart_t5
|
|
import comfy.text_encoders.hydit
|
|
import comfy.text_encoders.flux
|
|
import comfy.text_encoders.long_clipl
|
|
import comfy.text_encoders.genmo
|
|
import comfy.text_encoders.lt
|
|
import comfy.text_encoders.hunyuan_video
|
|
|
|
import comfy.model_patcher
|
|
import comfy.lora
|
|
import comfy.lora_convert
|
|
import comfy.hooks
|
|
import comfy.t2i_adapter.adapter
|
|
import comfy.taesd.taesd
|
|
|
|
import comfy.ldm.flux.redux
|
|
|
|
def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
|
|
key_map = {}
|
|
if model is not None:
|
|
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
|
|
if clip is not None:
|
|
key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)
|
|
|
|
lora = comfy.lora_convert.convert_lora(lora)
|
|
loaded = comfy.lora.load_lora(lora, key_map)
|
|
if model is not None:
|
|
new_modelpatcher = model.clone()
|
|
k = new_modelpatcher.add_patches(loaded, strength_model)
|
|
else:
|
|
k = ()
|
|
new_modelpatcher = None
|
|
|
|
if clip is not None:
|
|
new_clip = clip.clone()
|
|
k1 = new_clip.add_patches(loaded, strength_clip)
|
|
else:
|
|
k1 = ()
|
|
new_clip = None
|
|
k = set(k)
|
|
k1 = set(k1)
|
|
for x in loaded:
|
|
if (x not in k) and (x not in k1):
|
|
logging.warning("NOT LOADED {}".format(x))
|
|
|
|
return (new_modelpatcher, new_clip)
|
|
|
|
|
|
class CLIP:
|
|
def __init__(self, target=None, embedding_directory=None, no_init=False, tokenizer_data={}, parameters=0, model_options={}):
|
|
if no_init:
|
|
return
|
|
params = target.params.copy()
|
|
clip = target.clip
|
|
tokenizer = target.tokenizer
|
|
|
|
load_device = model_options.get("load_device", model_management.text_encoder_device())
|
|
offload_device = model_options.get("offload_device", model_management.text_encoder_offload_device())
|
|
dtype = model_options.get("dtype", None)
|
|
if dtype is None:
|
|
dtype = model_management.text_encoder_dtype(load_device)
|
|
|
|
params['dtype'] = dtype
|
|
params['device'] = model_options.get("initial_device", model_management.text_encoder_initial_device(load_device, offload_device, parameters * model_management.dtype_size(dtype)))
|
|
params['model_options'] = model_options
|
|
|
|
self.cond_stage_model = clip(**(params))
|
|
|
|
for dt in self.cond_stage_model.dtypes:
|
|
if not model_management.supports_cast(load_device, dt):
|
|
load_device = offload_device
|
|
if params['device'] != offload_device:
|
|
self.cond_stage_model.to(offload_device)
|
|
logging.warning("Had to shift TE back.")
|
|
|
|
self.tokenizer = tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
|
self.patcher = comfy.model_patcher.ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
|
|
self.patcher.hook_mode = comfy.hooks.EnumHookMode.MinVram
|
|
self.patcher.is_clip = True
|
|
self.apply_hooks_to_conds = None
|
|
if params['device'] == load_device:
|
|
model_management.load_models_gpu([self.patcher], force_full_load=True)
|
|
self.layer_idx = None
|
|
self.use_clip_schedule = False
|
|
logging.info("CLIP/text encoder model load device: {}, offload device: {}, current: {}, dtype: {}".format(load_device, offload_device, params['device'], dtype))
|
|
|
|
def clone(self):
|
|
n = CLIP(no_init=True)
|
|
n.patcher = self.patcher.clone()
|
|
n.cond_stage_model = self.cond_stage_model
|
|
n.tokenizer = self.tokenizer
|
|
n.layer_idx = self.layer_idx
|
|
n.use_clip_schedule = self.use_clip_schedule
|
|
n.apply_hooks_to_conds = self.apply_hooks_to_conds
|
|
return n
|
|
|
|
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
|
|
return self.patcher.add_patches(patches, strength_patch, strength_model)
|
|
|
|
def clip_layer(self, layer_idx):
|
|
self.layer_idx = layer_idx
|
|
|
|
def tokenize(self, text, return_word_ids=False):
|
|
return self.tokenizer.tokenize_with_weights(text, return_word_ids)
|
|
|
|
def add_hooks_to_dict(self, pooled_dict: dict[str]):
|
|
if self.apply_hooks_to_conds:
|
|
pooled_dict["hooks"] = self.apply_hooks_to_conds
|
|
return pooled_dict
|
|
|
|
def encode_from_tokens_scheduled(self, tokens, unprojected=False, add_dict: dict[str]={}, show_pbar=True):
|
|
all_cond_pooled: list[tuple[torch.Tensor, dict[str]]] = []
|
|
all_hooks = self.patcher.forced_hooks
|
|
if all_hooks is None or not self.use_clip_schedule:
|
|
# if no hooks or shouldn't use clip schedule, do unscheduled encode_from_tokens and perform add_dict
|
|
return_pooled = "unprojected" if unprojected else True
|
|
pooled_dict = self.encode_from_tokens(tokens, return_pooled=return_pooled, return_dict=True)
|
|
cond = pooled_dict.pop("cond")
|
|
# add/update any keys with the provided add_dict
|
|
pooled_dict.update(add_dict)
|
|
all_cond_pooled.append([cond, pooled_dict])
|
|
else:
|
|
scheduled_keyframes = all_hooks.get_hooks_for_clip_schedule()
|
|
|
|
self.cond_stage_model.reset_clip_options()
|
|
if self.layer_idx is not None:
|
|
self.cond_stage_model.set_clip_options({"layer": self.layer_idx})
|
|
if unprojected:
|
|
self.cond_stage_model.set_clip_options({"projected_pooled": False})
|
|
|
|
self.load_model()
|
|
all_hooks.reset()
|
|
self.patcher.patch_hooks(None)
|
|
if show_pbar:
|
|
pbar = ProgressBar(len(scheduled_keyframes))
|
|
|
|
for scheduled_opts in scheduled_keyframes:
|
|
t_range = scheduled_opts[0]
|
|
# don't bother encoding any conds outside of start_percent and end_percent bounds
|
|
if "start_percent" in add_dict:
|
|
if t_range[1] < add_dict["start_percent"]:
|
|
continue
|
|
if "end_percent" in add_dict:
|
|
if t_range[0] > add_dict["end_percent"]:
|
|
continue
|
|
hooks_keyframes = scheduled_opts[1]
|
|
for hook, keyframe in hooks_keyframes:
|
|
hook.hook_keyframe._current_keyframe = keyframe
|
|
# apply appropriate hooks with values that match new hook_keyframe
|
|
self.patcher.patch_hooks(all_hooks)
|
|
# perform encoding as normal
|
|
o = self.cond_stage_model.encode_token_weights(tokens)
|
|
cond, pooled = o[:2]
|
|
pooled_dict = {"pooled_output": pooled}
|
|
# add clip_start_percent and clip_end_percent in pooled
|
|
pooled_dict["clip_start_percent"] = t_range[0]
|
|
pooled_dict["clip_end_percent"] = t_range[1]
|
|
# add/update any keys with the provided add_dict
|
|
pooled_dict.update(add_dict)
|
|
# add hooks stored on clip
|
|
self.add_hooks_to_dict(pooled_dict)
|
|
all_cond_pooled.append([cond, pooled_dict])
|
|
if show_pbar:
|
|
pbar.update(1)
|
|
model_management.throw_exception_if_processing_interrupted()
|
|
all_hooks.reset()
|
|
return all_cond_pooled
|
|
|
|
def encode_from_tokens(self, tokens, return_pooled=False, return_dict=False):
|
|
self.cond_stage_model.reset_clip_options()
|
|
|
|
if self.layer_idx is not None:
|
|
self.cond_stage_model.set_clip_options({"layer": self.layer_idx})
|
|
|
|
if return_pooled == "unprojected":
|
|
self.cond_stage_model.set_clip_options({"projected_pooled": False})
|
|
|
|
self.load_model()
|
|
o = self.cond_stage_model.encode_token_weights(tokens)
|
|
cond, pooled = o[:2]
|
|
if return_dict:
|
|
out = {"cond": cond, "pooled_output": pooled}
|
|
if len(o) > 2:
|
|
for k in o[2]:
|
|
out[k] = o[2][k]
|
|
self.add_hooks_to_dict(out)
|
|
return out
|
|
|
|
if return_pooled:
|
|
return cond, pooled
|
|
return cond
|
|
|
|
def encode(self, text):
|
|
tokens = self.tokenize(text)
|
|
return self.encode_from_tokens(tokens)
|
|
|
|
def load_sd(self, sd, full_model=False):
|
|
if full_model:
|
|
return self.cond_stage_model.load_state_dict(sd, strict=False)
|
|
else:
|
|
return self.cond_stage_model.load_sd(sd)
|
|
|
|
def get_sd(self):
|
|
sd_clip = self.cond_stage_model.state_dict()
|
|
sd_tokenizer = self.tokenizer.state_dict()
|
|
for k in sd_tokenizer:
|
|
sd_clip[k] = sd_tokenizer[k]
|
|
return sd_clip
|
|
|
|
def load_model(self):
|
|
model_management.load_model_gpu(self.patcher)
|
|
return self.patcher
|
|
|
|
def get_key_patches(self):
|
|
return self.patcher.get_key_patches()
|
|
|
|
class VAE:
|
|
def __init__(self, sd=None, device=None, config=None, dtype=None):
|
|
if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
|
|
sd = diffusers_convert.convert_vae_state_dict(sd)
|
|
|
|
self.memory_used_encode = lambda shape, dtype: (1767 * shape[2] * shape[3]) * model_management.dtype_size(dtype) #These are for AutoencoderKL and need tweaking (should be lower)
|
|
self.memory_used_decode = lambda shape, dtype: (2178 * shape[2] * shape[3] * 64) * model_management.dtype_size(dtype)
|
|
self.downscale_ratio = 8
|
|
self.upscale_ratio = 8
|
|
self.latent_channels = 4
|
|
self.latent_dim = 2
|
|
self.output_channels = 3
|
|
self.process_input = lambda image: image * 2.0 - 1.0
|
|
self.process_output = lambda image: torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)
|
|
self.working_dtypes = [torch.bfloat16, torch.float32]
|
|
|
|
self.downscale_index_formula = None
|
|
self.upscale_index_formula = None
|
|
|
|
if config is None:
|
|
if "decoder.mid.block_1.mix_factor" in sd:
|
|
encoder_config = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
|
|
decoder_config = encoder_config.copy()
|
|
decoder_config["video_kernel_size"] = [3, 1, 1]
|
|
decoder_config["alpha"] = 0.0
|
|
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"},
|
|
encoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Encoder", 'params': encoder_config},
|
|
decoder_config={'target': "comfy.ldm.modules.temporal_ae.VideoDecoder", 'params': decoder_config})
|
|
elif "taesd_decoder.1.weight" in sd:
|
|
self.latent_channels = sd["taesd_decoder.1.weight"].shape[1]
|
|
self.first_stage_model = comfy.taesd.taesd.TAESD(latent_channels=self.latent_channels)
|
|
elif "vquantizer.codebook.weight" in sd: #VQGan: stage a of stable cascade
|
|
self.first_stage_model = StageA()
|
|
self.downscale_ratio = 4
|
|
self.upscale_ratio = 4
|
|
#TODO
|
|
#self.memory_used_encode
|
|
#self.memory_used_decode
|
|
self.process_input = lambda image: image
|
|
self.process_output = lambda image: image
|
|
elif "backbone.1.0.block.0.1.num_batches_tracked" in sd: #effnet: encoder for stage c latent of stable cascade
|
|
self.first_stage_model = StageC_coder()
|
|
self.downscale_ratio = 32
|
|
self.latent_channels = 16
|
|
new_sd = {}
|
|
for k in sd:
|
|
new_sd["encoder.{}".format(k)] = sd[k]
|
|
sd = new_sd
|
|
elif "blocks.11.num_batches_tracked" in sd: #previewer: decoder for stage c latent of stable cascade
|
|
self.first_stage_model = StageC_coder()
|
|
self.latent_channels = 16
|
|
new_sd = {}
|
|
for k in sd:
|
|
new_sd["previewer.{}".format(k)] = sd[k]
|
|
sd = new_sd
|
|
elif "encoder.backbone.1.0.block.0.1.num_batches_tracked" in sd: #combined effnet and previewer for stable cascade
|
|
self.first_stage_model = StageC_coder()
|
|
self.downscale_ratio = 32
|
|
self.latent_channels = 16
|
|
elif "decoder.conv_in.weight" in sd:
|
|
#default SD1.x/SD2.x VAE parameters
|
|
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
|
|
|
|
if 'encoder.down.2.downsample.conv.weight' not in sd and 'decoder.up.3.upsample.conv.weight' not in sd: #Stable diffusion x4 upscaler VAE
|
|
ddconfig['ch_mult'] = [1, 2, 4]
|
|
self.downscale_ratio = 4
|
|
self.upscale_ratio = 4
|
|
|
|
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1]
|
|
if 'post_quant_conv.weight' in sd:
|
|
self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=sd['post_quant_conv.weight'].shape[1])
|
|
else:
|
|
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"},
|
|
encoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Encoder", 'params': ddconfig},
|
|
decoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Decoder", 'params': ddconfig})
|
|
elif "decoder.layers.1.layers.0.beta" in sd:
|
|
self.first_stage_model = AudioOobleckVAE()
|
|
self.memory_used_encode = lambda shape, dtype: (1000 * shape[2]) * model_management.dtype_size(dtype)
|
|
self.memory_used_decode = lambda shape, dtype: (1000 * shape[2] * 2048) * model_management.dtype_size(dtype)
|
|
self.latent_channels = 64
|
|
self.output_channels = 2
|
|
self.upscale_ratio = 2048
|
|
self.downscale_ratio = 2048
|
|
self.latent_dim = 1
|
|
self.process_output = lambda audio: audio
|
|
self.process_input = lambda audio: audio
|
|
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
|
|
elif "blocks.2.blocks.3.stack.5.weight" in sd or "decoder.blocks.2.blocks.3.stack.5.weight" in sd or "layers.4.layers.1.attn_block.attn.qkv.weight" in sd or "encoder.layers.4.layers.1.attn_block.attn.qkv.weight" in sd: #genmo mochi vae
|
|
if "blocks.2.blocks.3.stack.5.weight" in sd:
|
|
sd = comfy.utils.state_dict_prefix_replace(sd, {"": "decoder."})
|
|
if "layers.4.layers.1.attn_block.attn.qkv.weight" in sd:
|
|
sd = comfy.utils.state_dict_prefix_replace(sd, {"": "encoder."})
|
|
self.first_stage_model = comfy.ldm.genmo.vae.model.VideoVAE()
|
|
self.latent_channels = 12
|
|
self.latent_dim = 3
|
|
self.memory_used_decode = lambda shape, dtype: (1000 * shape[2] * shape[3] * shape[4] * (6 * 8 * 8)) * model_management.dtype_size(dtype)
|
|
self.memory_used_encode = lambda shape, dtype: (1.5 * max(shape[2], 7) * shape[3] * shape[4] * (6 * 8 * 8)) * model_management.dtype_size(dtype)
|
|
self.upscale_ratio = (lambda a: max(0, a * 6 - 5), 8, 8)
|
|
self.upscale_index_formula = (6, 8, 8)
|
|
self.downscale_ratio = (lambda a: max(0, math.floor((a + 5) / 6)), 8, 8)
|
|
self.downscale_index_formula = (6, 8, 8)
|
|
self.working_dtypes = [torch.float16, torch.float32]
|
|
elif "decoder.up_blocks.0.res_blocks.0.conv1.conv.weight" in sd: #lightricks ltxv
|
|
tensor_conv1 = sd["decoder.up_blocks.0.res_blocks.0.conv1.conv.weight"]
|
|
version = 0
|
|
if tensor_conv1.shape[0] == 512:
|
|
version = 0
|
|
elif tensor_conv1.shape[0] == 1024:
|
|
version = 1
|
|
self.first_stage_model = comfy.ldm.lightricks.vae.causal_video_autoencoder.VideoVAE(version=version)
|
|
self.latent_channels = 128
|
|
self.latent_dim = 3
|
|
self.memory_used_decode = lambda shape, dtype: (900 * shape[2] * shape[3] * shape[4] * (8 * 8 * 8)) * model_management.dtype_size(dtype)
|
|
self.memory_used_encode = lambda shape, dtype: (70 * max(shape[2], 7) * shape[3] * shape[4]) * model_management.dtype_size(dtype)
|
|
self.upscale_ratio = (lambda a: max(0, a * 8 - 7), 32, 32)
|
|
self.upscale_index_formula = (8, 32, 32)
|
|
self.downscale_ratio = (lambda a: max(0, math.floor((a + 7) / 8)), 32, 32)
|
|
self.downscale_index_formula = (8, 32, 32)
|
|
self.working_dtypes = [torch.bfloat16, torch.float32]
|
|
elif "decoder.conv_in.conv.weight" in sd:
|
|
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
|
|
ddconfig["conv3d"] = True
|
|
ddconfig["time_compress"] = 4
|
|
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 8, 8)
|
|
self.upscale_index_formula = (4, 8, 8)
|
|
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 8, 8)
|
|
self.downscale_index_formula = (4, 8, 8)
|
|
self.latent_dim = 3
|
|
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.conv.weight"].shape[1]
|
|
self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=sd['post_quant_conv.weight'].shape[1])
|
|
self.memory_used_decode = lambda shape, dtype: (1500 * shape[2] * shape[3] * shape[4] * (4 * 8 * 8)) * model_management.dtype_size(dtype)
|
|
self.memory_used_encode = lambda shape, dtype: (900 * max(shape[2], 2) * shape[3] * shape[4]) * model_management.dtype_size(dtype)
|
|
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
|
|
else:
|
|
logging.warning("WARNING: No VAE weights detected, VAE not initalized.")
|
|
self.first_stage_model = None
|
|
return
|
|
else:
|
|
self.first_stage_model = AutoencoderKL(**(config['params']))
|
|
self.first_stage_model = self.first_stage_model.eval()
|
|
|
|
m, u = self.first_stage_model.load_state_dict(sd, strict=False)
|
|
if len(m) > 0:
|
|
logging.warning("Missing VAE keys {}".format(m))
|
|
|
|
if len(u) > 0:
|
|
logging.debug("Leftover VAE keys {}".format(u))
|
|
|
|
if device is None:
|
|
device = model_management.vae_device()
|
|
self.device = device
|
|
offload_device = model_management.vae_offload_device()
|
|
if dtype is None:
|
|
dtype = model_management.vae_dtype(self.device, self.working_dtypes)
|
|
self.vae_dtype = dtype
|
|
self.first_stage_model.to(self.vae_dtype)
|
|
self.output_device = model_management.intermediate_device()
|
|
|
|
self.patcher = comfy.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device)
|
|
logging.info("VAE load device: {}, offload device: {}, dtype: {}".format(self.device, offload_device, self.vae_dtype))
|
|
|
|
def vae_encode_crop_pixels(self, pixels):
|
|
downscale_ratio = self.spacial_compression_encode()
|
|
|
|
dims = pixels.shape[1:-1]
|
|
for d in range(len(dims)):
|
|
x = (dims[d] // downscale_ratio) * downscale_ratio
|
|
x_offset = (dims[d] % downscale_ratio) // 2
|
|
if x != dims[d]:
|
|
pixels = pixels.narrow(d + 1, x_offset, x)
|
|
return pixels
|
|
|
|
def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
|
|
steps = samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
|
|
steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
|
steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
|
pbar = comfy.utils.ProgressBar(steps)
|
|
|
|
decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float()
|
|
output = self.process_output(
|
|
(comfy.utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = self.upscale_ratio, output_device=self.output_device, pbar = pbar) +
|
|
comfy.utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = self.upscale_ratio, output_device=self.output_device, pbar = pbar) +
|
|
comfy.utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = self.upscale_ratio, output_device=self.output_device, pbar = pbar))
|
|
/ 3.0)
|
|
return output
|
|
|
|
def decode_tiled_1d(self, samples, tile_x=128, overlap=32):
|
|
decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float()
|
|
return self.process_output(comfy.utils.tiled_scale_multidim(samples, decode_fn, tile=(tile_x,), overlap=overlap, upscale_amount=self.upscale_ratio, out_channels=self.output_channels, output_device=self.output_device))
|
|
|
|
def decode_tiled_3d(self, samples, tile_t=999, tile_x=32, tile_y=32, overlap=(1, 8, 8)):
|
|
decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float()
|
|
return self.process_output(comfy.utils.tiled_scale_multidim(samples, decode_fn, tile=(tile_t, tile_x, tile_y), overlap=overlap, upscale_amount=self.upscale_ratio, out_channels=self.output_channels, index_formulas=self.upscale_index_formula, output_device=self.output_device))
|
|
|
|
def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
|
|
steps = pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
|
|
steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
|
steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
|
pbar = comfy.utils.ProgressBar(steps)
|
|
|
|
encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float()
|
|
samples = comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
|
|
samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
|
|
samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
|
|
samples /= 3.0
|
|
return samples
|
|
|
|
def encode_tiled_1d(self, samples, tile_x=128 * 2048, overlap=32 * 2048):
|
|
encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float()
|
|
return comfy.utils.tiled_scale_multidim(samples, encode_fn, tile=(tile_x,), overlap=overlap, upscale_amount=(1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device)
|
|
|
|
def encode_tiled_3d(self, samples, tile_t=9999, tile_x=512, tile_y=512, overlap=(1, 64, 64)):
|
|
encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float()
|
|
return comfy.utils.tiled_scale_multidim(samples, encode_fn, tile=(tile_t, tile_x, tile_y), overlap=overlap, upscale_amount=self.downscale_ratio, out_channels=self.latent_channels, downscale=True, index_formulas=self.downscale_index_formula, output_device=self.output_device)
|
|
|
|
def decode(self, samples_in):
|
|
pixel_samples = None
|
|
try:
|
|
memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype)
|
|
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
|
|
free_memory = model_management.get_free_memory(self.device)
|
|
batch_number = int(free_memory / memory_used)
|
|
batch_number = max(1, batch_number)
|
|
|
|
for x in range(0, samples_in.shape[0], batch_number):
|
|
samples = samples_in[x:x+batch_number].to(self.vae_dtype).to(self.device)
|
|
out = self.process_output(self.first_stage_model.decode(samples).to(self.output_device).float())
|
|
if pixel_samples is None:
|
|
pixel_samples = torch.empty((samples_in.shape[0],) + tuple(out.shape[1:]), device=self.output_device)
|
|
pixel_samples[x:x+batch_number] = out
|
|
except model_management.OOM_EXCEPTION:
|
|
logging.warning("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
|
|
dims = samples_in.ndim - 2
|
|
if dims == 1:
|
|
pixel_samples = self.decode_tiled_1d(samples_in)
|
|
elif dims == 2:
|
|
pixel_samples = self.decode_tiled_(samples_in)
|
|
elif dims == 3:
|
|
tile = 256 // self.spacial_compression_decode()
|
|
overlap = tile // 4
|
|
pixel_samples = self.decode_tiled_3d(samples_in, tile_x=tile, tile_y=tile, overlap=(1, overlap, overlap))
|
|
|
|
pixel_samples = pixel_samples.to(self.output_device).movedim(1,-1)
|
|
return pixel_samples
|
|
|
|
def decode_tiled(self, samples, tile_x=None, tile_y=None, overlap=None, tile_t=None, overlap_t=None):
|
|
memory_used = self.memory_used_decode(samples.shape, self.vae_dtype) #TODO: calculate mem required for tile
|
|
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
|
|
dims = samples.ndim - 2
|
|
args = {}
|
|
if tile_x is not None:
|
|
args["tile_x"] = tile_x
|
|
if tile_y is not None:
|
|
args["tile_y"] = tile_y
|
|
if overlap is not None:
|
|
args["overlap"] = overlap
|
|
|
|
if dims == 1:
|
|
args.pop("tile_y")
|
|
output = self.decode_tiled_1d(samples, **args)
|
|
elif dims == 2:
|
|
output = self.decode_tiled_(samples, **args)
|
|
elif dims == 3:
|
|
if overlap_t is None:
|
|
args["overlap"] = (1, overlap, overlap)
|
|
else:
|
|
args["overlap"] = (max(1, overlap_t), overlap, overlap)
|
|
if tile_t is not None:
|
|
args["tile_t"] = max(2, tile_t)
|
|
|
|
output = self.decode_tiled_3d(samples, **args)
|
|
return output.movedim(1, -1)
|
|
|
|
def encode(self, pixel_samples):
|
|
pixel_samples = self.vae_encode_crop_pixels(pixel_samples)
|
|
pixel_samples = pixel_samples.movedim(-1, 1)
|
|
if self.latent_dim == 3:
|
|
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
|
|
try:
|
|
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype)
|
|
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
|
|
free_memory = model_management.get_free_memory(self.device)
|
|
batch_number = int(free_memory / max(1, memory_used))
|
|
batch_number = max(1, batch_number)
|
|
samples = None
|
|
for x in range(0, pixel_samples.shape[0], batch_number):
|
|
pixels_in = self.process_input(pixel_samples[x:x + batch_number]).to(self.vae_dtype).to(self.device)
|
|
out = self.first_stage_model.encode(pixels_in).to(self.output_device).float()
|
|
if samples is None:
|
|
samples = torch.empty((pixel_samples.shape[0],) + tuple(out.shape[1:]), device=self.output_device)
|
|
samples[x:x + batch_number] = out
|
|
|
|
except model_management.OOM_EXCEPTION:
|
|
logging.warning("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
|
|
if self.latent_dim == 3:
|
|
tile = 256
|
|
overlap = tile // 4
|
|
samples = self.encode_tiled_3d(pixel_samples, tile_x=tile, tile_y=tile, overlap=(1, overlap, overlap))
|
|
elif self.latent_dim == 1:
|
|
samples = self.encode_tiled_1d(pixel_samples)
|
|
else:
|
|
samples = self.encode_tiled_(pixel_samples)
|
|
|
|
return samples
|
|
|
|
def encode_tiled(self, pixel_samples, tile_x=None, tile_y=None, overlap=None, tile_t=None, overlap_t=None):
|
|
pixel_samples = self.vae_encode_crop_pixels(pixel_samples)
|
|
dims = self.latent_dim
|
|
pixel_samples = pixel_samples.movedim(-1, 1)
|
|
if dims == 3:
|
|
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
|
|
|
|
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype) # TODO: calculate mem required for tile
|
|
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
|
|
|
|
args = {}
|
|
if tile_x is not None:
|
|
args["tile_x"] = tile_x
|
|
if tile_y is not None:
|
|
args["tile_y"] = tile_y
|
|
if overlap is not None:
|
|
args["overlap"] = overlap
|
|
|
|
if dims == 1:
|
|
args.pop("tile_y")
|
|
samples = self.encode_tiled_1d(pixel_samples, **args)
|
|
elif dims == 2:
|
|
samples = self.encode_tiled_(pixel_samples, **args)
|
|
elif dims == 3:
|
|
if tile_t is not None:
|
|
tile_t_latent = max(2, self.downscale_ratio[0](tile_t))
|
|
else:
|
|
tile_t_latent = 9999
|
|
args["tile_t"] = self.upscale_ratio[0](tile_t_latent)
|
|
|
|
if overlap_t is None:
|
|
args["overlap"] = (1, overlap, overlap)
|
|
else:
|
|
args["overlap"] = (self.upscale_ratio[0](max(1, min(tile_t_latent // 2, self.downscale_ratio[0](overlap_t)))), overlap, overlap)
|
|
maximum = pixel_samples.shape[2]
|
|
maximum = self.upscale_ratio[0](self.downscale_ratio[0](maximum))
|
|
|
|
samples = self.encode_tiled_3d(pixel_samples[:,:,:maximum], **args)
|
|
|
|
return samples
|
|
|
|
def get_sd(self):
|
|
return self.first_stage_model.state_dict()
|
|
|
|
def spacial_compression_decode(self):
|
|
try:
|
|
return self.upscale_ratio[-1]
|
|
except:
|
|
return self.upscale_ratio
|
|
|
|
def spacial_compression_encode(self):
|
|
try:
|
|
return self.downscale_ratio[-1]
|
|
except:
|
|
return self.downscale_ratio
|
|
|
|
def temporal_compression_decode(self):
|
|
try:
|
|
return round(self.upscale_ratio[0](8192) / 8192)
|
|
except:
|
|
return None
|
|
|
|
class StyleModel:
|
|
def __init__(self, model, device="cpu"):
|
|
self.model = model
|
|
|
|
def get_cond(self, input):
|
|
return self.model(input.last_hidden_state)
|
|
|
|
|
|
def load_style_model(ckpt_path):
|
|
model_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
|
|
keys = model_data.keys()
|
|
if "style_embedding" in keys:
|
|
model = comfy.t2i_adapter.adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
|
|
elif "redux_down.weight" in keys:
|
|
model = comfy.ldm.flux.redux.ReduxImageEncoder()
|
|
else:
|
|
raise Exception("invalid style model {}".format(ckpt_path))
|
|
model.load_state_dict(model_data)
|
|
return StyleModel(model)
|
|
|
|
class CLIPType(Enum):
|
|
STABLE_DIFFUSION = 1
|
|
STABLE_CASCADE = 2
|
|
SD3 = 3
|
|
STABLE_AUDIO = 4
|
|
HUNYUAN_DIT = 5
|
|
FLUX = 6
|
|
MOCHI = 7
|
|
LTXV = 8
|
|
HUNYUAN_VIDEO = 9
|
|
PIXART = 10
|
|
|
|
|
|
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
|
|
clip_data = []
|
|
for p in ckpt_paths:
|
|
clip_data.append(comfy.utils.load_torch_file(p, safe_load=True))
|
|
return load_text_encoder_state_dicts(clip_data, embedding_directory=embedding_directory, clip_type=clip_type, model_options=model_options)
|
|
|
|
|
|
class TEModel(Enum):
|
|
CLIP_L = 1
|
|
CLIP_H = 2
|
|
CLIP_G = 3
|
|
T5_XXL = 4
|
|
T5_XL = 5
|
|
T5_BASE = 6
|
|
LLAMA3_8 = 7
|
|
|
|
def detect_te_model(sd):
|
|
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
|
|
return TEModel.CLIP_G
|
|
if "text_model.encoder.layers.22.mlp.fc1.weight" in sd:
|
|
return TEModel.CLIP_H
|
|
if "text_model.encoder.layers.0.mlp.fc1.weight" in sd:
|
|
return TEModel.CLIP_L
|
|
if "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" in sd:
|
|
weight = sd["encoder.block.23.layer.1.DenseReluDense.wi_1.weight"]
|
|
if weight.shape[-1] == 4096:
|
|
return TEModel.T5_XXL
|
|
elif weight.shape[-1] == 2048:
|
|
return TEModel.T5_XL
|
|
if "encoder.block.0.layer.0.SelfAttention.k.weight" in sd:
|
|
return TEModel.T5_BASE
|
|
if "model.layers.0.post_attention_layernorm.weight" in sd:
|
|
return TEModel.LLAMA3_8
|
|
return None
|
|
|
|
|
|
def t5xxl_detect(clip_data):
|
|
weight_name = "encoder.block.23.layer.1.DenseReluDense.wi_1.weight"
|
|
|
|
for sd in clip_data:
|
|
if weight_name in sd:
|
|
return comfy.text_encoders.sd3_clip.t5_xxl_detect(sd)
|
|
|
|
return {}
|
|
|
|
def llama_detect(clip_data):
|
|
weight_name = "model.layers.0.self_attn.k_proj.weight"
|
|
|
|
for sd in clip_data:
|
|
if weight_name in sd:
|
|
return comfy.text_encoders.hunyuan_video.llama_detect(sd)
|
|
|
|
return {}
|
|
|
|
def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
|
|
clip_data = state_dicts
|
|
|
|
class EmptyClass:
|
|
pass
|
|
|
|
for i in range(len(clip_data)):
|
|
if "transformer.resblocks.0.ln_1.weight" in clip_data[i]:
|
|
clip_data[i] = comfy.utils.clip_text_transformers_convert(clip_data[i], "", "")
|
|
else:
|
|
if "text_projection" in clip_data[i]:
|
|
clip_data[i]["text_projection.weight"] = clip_data[i]["text_projection"].transpose(0, 1) #old models saved with the CLIPSave node
|
|
|
|
clip_target = EmptyClass()
|
|
clip_target.params = {}
|
|
if len(clip_data) == 1:
|
|
te_model = detect_te_model(clip_data[0])
|
|
if te_model == TEModel.CLIP_G:
|
|
if clip_type == CLIPType.STABLE_CASCADE:
|
|
clip_target.clip = sdxl_clip.StableCascadeClipModel
|
|
clip_target.tokenizer = sdxl_clip.StableCascadeTokenizer
|
|
elif clip_type == CLIPType.SD3:
|
|
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=True, t5=False)
|
|
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
|
else:
|
|
clip_target.clip = sdxl_clip.SDXLRefinerClipModel
|
|
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
|
|
elif te_model == TEModel.CLIP_H:
|
|
clip_target.clip = comfy.text_encoders.sd2_clip.SD2ClipModel
|
|
clip_target.tokenizer = comfy.text_encoders.sd2_clip.SD2Tokenizer
|
|
elif te_model == TEModel.T5_XXL:
|
|
if clip_type == CLIPType.SD3:
|
|
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=False, t5=True, **t5xxl_detect(clip_data))
|
|
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
|
elif clip_type == CLIPType.LTXV:
|
|
clip_target.clip = comfy.text_encoders.lt.ltxv_te(**t5xxl_detect(clip_data))
|
|
clip_target.tokenizer = comfy.text_encoders.lt.LTXVT5Tokenizer
|
|
elif clip_type == CLIPType.PIXART:
|
|
clip_target.clip = comfy.text_encoders.pixart_t5.pixart_te(**t5xxl_detect(clip_data))
|
|
clip_target.tokenizer = comfy.text_encoders.pixart_t5.PixArtTokenizer
|
|
else: #CLIPType.MOCHI
|
|
clip_target.clip = comfy.text_encoders.genmo.mochi_te(**t5xxl_detect(clip_data))
|
|
clip_target.tokenizer = comfy.text_encoders.genmo.MochiT5Tokenizer
|
|
elif te_model == TEModel.T5_XL:
|
|
clip_target.clip = comfy.text_encoders.aura_t5.AuraT5Model
|
|
clip_target.tokenizer = comfy.text_encoders.aura_t5.AuraT5Tokenizer
|
|
elif te_model == TEModel.T5_BASE:
|
|
clip_target.clip = comfy.text_encoders.sa_t5.SAT5Model
|
|
clip_target.tokenizer = comfy.text_encoders.sa_t5.SAT5Tokenizer
|
|
else:
|
|
if clip_type == CLIPType.SD3:
|
|
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=True, clip_g=False, t5=False)
|
|
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
|
else:
|
|
clip_target.clip = sd1_clip.SD1ClipModel
|
|
clip_target.tokenizer = sd1_clip.SD1Tokenizer
|
|
elif len(clip_data) == 2:
|
|
if clip_type == CLIPType.SD3:
|
|
te_models = [detect_te_model(clip_data[0]), detect_te_model(clip_data[1])]
|
|
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=TEModel.CLIP_L in te_models, clip_g=TEModel.CLIP_G in te_models, t5=TEModel.T5_XXL in te_models, **t5xxl_detect(clip_data))
|
|
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
|
elif clip_type == CLIPType.HUNYUAN_DIT:
|
|
clip_target.clip = comfy.text_encoders.hydit.HyditModel
|
|
clip_target.tokenizer = comfy.text_encoders.hydit.HyditTokenizer
|
|
elif clip_type == CLIPType.FLUX:
|
|
clip_target.clip = comfy.text_encoders.flux.flux_clip(**t5xxl_detect(clip_data))
|
|
clip_target.tokenizer = comfy.text_encoders.flux.FluxTokenizer
|
|
elif clip_type == CLIPType.HUNYUAN_VIDEO:
|
|
clip_target.clip = comfy.text_encoders.hunyuan_video.hunyuan_video_clip(**llama_detect(clip_data))
|
|
clip_target.tokenizer = comfy.text_encoders.hunyuan_video.HunyuanVideoTokenizer
|
|
else:
|
|
clip_target.clip = sdxl_clip.SDXLClipModel
|
|
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
|
|
elif len(clip_data) == 3:
|
|
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(**t5xxl_detect(clip_data))
|
|
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
|
|
|
parameters = 0
|
|
tokenizer_data = {}
|
|
for c in clip_data:
|
|
parameters += comfy.utils.calculate_parameters(c)
|
|
tokenizer_data, model_options = comfy.text_encoders.long_clipl.model_options_long_clip(c, tokenizer_data, model_options)
|
|
|
|
clip = CLIP(clip_target, embedding_directory=embedding_directory, parameters=parameters, tokenizer_data=tokenizer_data, model_options=model_options)
|
|
for c in clip_data:
|
|
m, u = clip.load_sd(c)
|
|
if len(m) > 0:
|
|
logging.warning("clip missing: {}".format(m))
|
|
|
|
if len(u) > 0:
|
|
logging.debug("clip unexpected: {}".format(u))
|
|
return clip
|
|
|
|
def load_gligen(ckpt_path):
|
|
data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
|
|
model = gligen.load_gligen(data)
|
|
if model_management.should_use_fp16():
|
|
model = model.half()
|
|
return comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
|
|
|
|
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
|
|
logging.warning("Warning: The load checkpoint with config function is deprecated and will eventually be removed, please use the other one.")
|
|
model, clip, vae, _ = load_checkpoint_guess_config(ckpt_path, output_vae=output_vae, output_clip=output_clip, output_clipvision=False, embedding_directory=embedding_directory, output_model=True)
|
|
#TODO: this function is a mess and should be removed eventually
|
|
if config is None:
|
|
with open(config_path, 'r') as stream:
|
|
config = yaml.safe_load(stream)
|
|
model_config_params = config['model']['params']
|
|
clip_config = model_config_params['cond_stage_config']
|
|
|
|
if "parameterization" in model_config_params:
|
|
if model_config_params["parameterization"] == "v":
|
|
m = model.clone()
|
|
class ModelSamplingAdvanced(comfy.model_sampling.ModelSamplingDiscrete, comfy.model_sampling.V_PREDICTION):
|
|
pass
|
|
m.add_object_patch("model_sampling", ModelSamplingAdvanced(model.model.model_config))
|
|
model = m
|
|
|
|
layer_idx = clip_config.get("params", {}).get("layer_idx", None)
|
|
if layer_idx is not None:
|
|
clip.clip_layer(layer_idx)
|
|
|
|
return (model, clip, vae)
|
|
|
|
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}, te_model_options={}):
|
|
sd = comfy.utils.load_torch_file(ckpt_path)
|
|
out = load_state_dict_guess_config(sd, output_vae, output_clip, output_clipvision, embedding_directory, output_model, model_options, te_model_options=te_model_options)
|
|
if out is None:
|
|
raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
|
|
return out
|
|
|
|
def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}, te_model_options={}):
|
|
clip = None
|
|
clipvision = None
|
|
vae = None
|
|
model = None
|
|
model_patcher = None
|
|
|
|
diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd)
|
|
parameters = comfy.utils.calculate_parameters(sd, diffusion_model_prefix)
|
|
weight_dtype = comfy.utils.weight_dtype(sd, diffusion_model_prefix)
|
|
load_device = model_management.get_torch_device()
|
|
|
|
model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix)
|
|
if model_config is None:
|
|
return None
|
|
|
|
unet_weight_dtype = list(model_config.supported_inference_dtypes)
|
|
if weight_dtype is not None and model_config.scaled_fp8 is None:
|
|
unet_weight_dtype.append(weight_dtype)
|
|
|
|
model_config.custom_operations = model_options.get("custom_operations", None)
|
|
unet_dtype = model_options.get("dtype", model_options.get("weight_dtype", None))
|
|
|
|
if unet_dtype is None:
|
|
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype)
|
|
|
|
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
|
|
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
|
|
|
|
if model_config.clip_vision_prefix is not None:
|
|
if output_clipvision:
|
|
clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)
|
|
|
|
if output_model:
|
|
inital_load_device = model_management.unet_inital_load_device(parameters, unet_dtype)
|
|
model = model_config.get_model(sd, diffusion_model_prefix, device=inital_load_device)
|
|
model.load_model_weights(sd, diffusion_model_prefix)
|
|
|
|
if output_vae:
|
|
vae_sd = comfy.utils.state_dict_prefix_replace(sd, {k: "" for k in model_config.vae_key_prefix}, filter_keys=True)
|
|
vae_sd = model_config.process_vae_state_dict(vae_sd)
|
|
vae = VAE(sd=vae_sd)
|
|
|
|
if output_clip:
|
|
clip_target = model_config.clip_target(state_dict=sd)
|
|
if clip_target is not None:
|
|
clip_sd = model_config.process_clip_state_dict(sd)
|
|
if len(clip_sd) > 0:
|
|
parameters = comfy.utils.calculate_parameters(clip_sd)
|
|
clip = CLIP(clip_target, embedding_directory=embedding_directory, tokenizer_data=clip_sd, parameters=parameters, model_options=te_model_options)
|
|
m, u = clip.load_sd(clip_sd, full_model=True)
|
|
if len(m) > 0:
|
|
m_filter = list(filter(lambda a: ".logit_scale" not in a and ".transformer.text_projection.weight" not in a, m))
|
|
if len(m_filter) > 0:
|
|
logging.warning("clip missing: {}".format(m))
|
|
else:
|
|
logging.debug("clip missing: {}".format(m))
|
|
|
|
if len(u) > 0:
|
|
logging.debug("clip unexpected {}:".format(u))
|
|
else:
|
|
logging.warning("no CLIP/text encoder weights in checkpoint, the text encoder model will not be loaded.")
|
|
|
|
left_over = sd.keys()
|
|
if len(left_over) > 0:
|
|
logging.debug("left over keys: {}".format(left_over))
|
|
|
|
if output_model:
|
|
model_patcher = comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device())
|
|
if inital_load_device != torch.device("cpu"):
|
|
logging.info("loaded diffusion model directly to GPU")
|
|
model_management.load_models_gpu([model_patcher], force_full_load=True)
|
|
|
|
return (model_patcher, clip, vae, clipvision)
|
|
|
|
|
|
def load_diffusion_model_state_dict(sd, model_options={}): #load unet in diffusers or regular format
|
|
dtype = model_options.get("dtype", None)
|
|
|
|
#Allow loading unets from checkpoint files
|
|
diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd)
|
|
temp_sd = comfy.utils.state_dict_prefix_replace(sd, {diffusion_model_prefix: ""}, filter_keys=True)
|
|
if len(temp_sd) > 0:
|
|
sd = temp_sd
|
|
|
|
parameters = comfy.utils.calculate_parameters(sd)
|
|
weight_dtype = comfy.utils.weight_dtype(sd)
|
|
|
|
load_device = model_management.get_torch_device()
|
|
model_config = model_detection.model_config_from_unet(sd, "")
|
|
|
|
if model_config is not None:
|
|
new_sd = sd
|
|
else:
|
|
new_sd = model_detection.convert_diffusers_mmdit(sd, "")
|
|
if new_sd is not None: #diffusers mmdit
|
|
model_config = model_detection.model_config_from_unet(new_sd, "")
|
|
if model_config is None:
|
|
return None
|
|
else: #diffusers unet
|
|
model_config = model_detection.model_config_from_diffusers_unet(sd)
|
|
if model_config is None:
|
|
return None
|
|
|
|
diffusers_keys = comfy.utils.unet_to_diffusers(model_config.unet_config)
|
|
|
|
new_sd = {}
|
|
for k in diffusers_keys:
|
|
if k in sd:
|
|
new_sd[diffusers_keys[k]] = sd.pop(k)
|
|
else:
|
|
logging.warning("{} {}".format(diffusers_keys[k], k))
|
|
|
|
offload_device = model_management.unet_offload_device()
|
|
unet_weight_dtype = list(model_config.supported_inference_dtypes)
|
|
if weight_dtype is not None and model_config.scaled_fp8 is None:
|
|
unet_weight_dtype.append(weight_dtype)
|
|
|
|
if dtype is None:
|
|
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype)
|
|
else:
|
|
unet_dtype = dtype
|
|
|
|
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
|
|
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
|
|
model_config.custom_operations = model_options.get("custom_operations", model_config.custom_operations)
|
|
if model_options.get("fp8_optimizations", False):
|
|
model_config.optimizations["fp8"] = True
|
|
|
|
model = model_config.get_model(new_sd, "")
|
|
model = model.to(offload_device)
|
|
model.load_model_weights(new_sd, "")
|
|
left_over = sd.keys()
|
|
if len(left_over) > 0:
|
|
logging.info("left over keys in unet: {}".format(left_over))
|
|
return comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=offload_device)
|
|
|
|
|
|
def load_diffusion_model(unet_path, model_options={}):
|
|
sd = comfy.utils.load_torch_file(unet_path)
|
|
model = load_diffusion_model_state_dict(sd, model_options=model_options)
|
|
if model is None:
|
|
logging.error("ERROR UNSUPPORTED UNET {}".format(unet_path))
|
|
raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path))
|
|
return model
|
|
|
|
def load_unet(unet_path, dtype=None):
|
|
logging.warning("The load_unet function has been deprecated and will be removed please switch to: load_diffusion_model")
|
|
return load_diffusion_model(unet_path, model_options={"dtype": dtype})
|
|
|
|
def load_unet_state_dict(sd, dtype=None):
|
|
logging.warning("The load_unet_state_dict function has been deprecated and will be removed please switch to: load_diffusion_model_state_dict")
|
|
return load_diffusion_model_state_dict(sd, model_options={"dtype": dtype})
|
|
|
|
def save_checkpoint(output_path, model, clip=None, vae=None, clip_vision=None, metadata=None, extra_keys={}):
|
|
clip_sd = None
|
|
load_models = [model]
|
|
if clip is not None:
|
|
load_models.append(clip.load_model())
|
|
clip_sd = clip.get_sd()
|
|
vae_sd = None
|
|
if vae is not None:
|
|
vae_sd = vae.get_sd()
|
|
|
|
model_management.load_models_gpu(load_models, force_patch_weights=True)
|
|
clip_vision_sd = clip_vision.get_sd() if clip_vision is not None else None
|
|
sd = model.model.state_dict_for_saving(clip_sd, vae_sd, clip_vision_sd)
|
|
for k in extra_keys:
|
|
sd[k] = extra_keys[k]
|
|
|
|
for k in sd:
|
|
t = sd[k]
|
|
if not t.is_contiguous():
|
|
sd[k] = t.contiguous()
|
|
|
|
comfy.utils.save_torch_file(sd, output_path, metadata=metadata)
|