mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
789 lines
32 KiB
Python
789 lines
32 KiB
Python
from __future__ import annotations
|
|
from typing import TYPE_CHECKING, Callable
|
|
import enum
|
|
import math
|
|
import torch
|
|
import numpy as np
|
|
import itertools
|
|
import logging
|
|
|
|
if TYPE_CHECKING:
|
|
from comfy.model_patcher import ModelPatcher, PatcherInjection
|
|
from comfy.model_base import BaseModel
|
|
from comfy.sd import CLIP
|
|
import comfy.lora
|
|
import comfy.model_management
|
|
import comfy.patcher_extension
|
|
from node_helpers import conditioning_set_values
|
|
|
|
# #######################################################################################################
|
|
# Hooks explanation
|
|
# -------------------
|
|
# The purpose of hooks is to allow conds to influence sampling without the need for ComfyUI core code to
|
|
# make explicit special cases like it does for ControlNet and GLIGEN.
|
|
#
|
|
# This is necessary for nodes/features that are intended for use with masked or scheduled conds, or those
|
|
# that should run special code when a 'marked' cond is used in sampling.
|
|
# #######################################################################################################
|
|
|
|
class EnumHookMode(enum.Enum):
|
|
'''
|
|
Priority of hook memory optimization vs. speed, mostly related to WeightHooks.
|
|
|
|
MinVram: No caching will occur for any operations related to hooks.
|
|
MaxSpeed: Excess VRAM (and RAM, once VRAM is sufficiently depleted) will be used to cache hook weights when switching hook groups.
|
|
'''
|
|
MinVram = "minvram"
|
|
MaxSpeed = "maxspeed"
|
|
|
|
class EnumHookType(enum.Enum):
|
|
'''
|
|
Hook types, each of which has different expected behavior.
|
|
'''
|
|
Weight = "weight"
|
|
ObjectPatch = "object_patch"
|
|
AddModels = "add_models"
|
|
TransformerOptions = "transformer_options"
|
|
Injections = "add_injections"
|
|
|
|
class EnumWeightTarget(enum.Enum):
|
|
Model = "model"
|
|
Clip = "clip"
|
|
|
|
class EnumHookScope(enum.Enum):
|
|
'''
|
|
Determines if hook should be limited in its influence over sampling.
|
|
|
|
AllConditioning: hook will affect all conds used in sampling.
|
|
HookedOnly: hook will only affect the conds it was attached to.
|
|
'''
|
|
AllConditioning = "all_conditioning"
|
|
HookedOnly = "hooked_only"
|
|
|
|
|
|
class _HookRef:
|
|
pass
|
|
|
|
|
|
def default_should_register(hook: Hook, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
|
|
'''Example for how should_register function should look like.'''
|
|
return True
|
|
|
|
|
|
def create_target_dict(target: EnumWeightTarget=None, **kwargs) -> dict[str]:
|
|
'''Creates base dictionary for use with Hooks' target param.'''
|
|
d = {}
|
|
if target is not None:
|
|
d['target'] = target
|
|
d.update(kwargs)
|
|
return d
|
|
|
|
|
|
class Hook:
|
|
def __init__(self, hook_type: EnumHookType=None, hook_ref: _HookRef=None, hook_id: str=None,
|
|
hook_keyframe: HookKeyframeGroup=None, hook_scope=EnumHookScope.AllConditioning):
|
|
self.hook_type = hook_type
|
|
self.hook_ref = hook_ref if hook_ref else _HookRef()
|
|
self.hook_id = hook_id
|
|
self.hook_keyframe = hook_keyframe if hook_keyframe else HookKeyframeGroup()
|
|
self.hook_scope = hook_scope
|
|
self.custom_should_register = default_should_register
|
|
self.auto_apply_to_nonpositive = False
|
|
|
|
@property
|
|
def strength(self):
|
|
return self.hook_keyframe.strength
|
|
|
|
def initialize_timesteps(self, model: BaseModel):
|
|
self.reset()
|
|
self.hook_keyframe.initialize_timesteps(model)
|
|
|
|
def reset(self):
|
|
self.hook_keyframe.reset()
|
|
|
|
def clone(self):
|
|
c: Hook = self.__class__()
|
|
c.hook_type = self.hook_type
|
|
c.hook_ref = self.hook_ref
|
|
c.hook_id = self.hook_id
|
|
c.hook_keyframe = self.hook_keyframe
|
|
c.hook_scope = self.hook_scope
|
|
c.custom_should_register = self.custom_should_register
|
|
# TODO: make this do something
|
|
c.auto_apply_to_nonpositive = self.auto_apply_to_nonpositive
|
|
return c
|
|
|
|
def should_register(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
|
|
return self.custom_should_register(self, model, model_options, target_dict, registered)
|
|
|
|
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
|
|
raise NotImplementedError("add_hook_patches should be defined for Hook subclasses")
|
|
|
|
def __eq__(self, other: Hook):
|
|
return self.__class__ == other.__class__ and self.hook_ref == other.hook_ref
|
|
|
|
def __hash__(self):
|
|
return hash(self.hook_ref)
|
|
|
|
class WeightHook(Hook):
|
|
'''
|
|
Hook responsible for tracking weights to be applied to some model/clip.
|
|
|
|
Note, value of hook_scope is ignored and is treated as HookedOnly.
|
|
'''
|
|
def __init__(self, strength_model=1.0, strength_clip=1.0):
|
|
super().__init__(hook_type=EnumHookType.Weight, hook_scope=EnumHookScope.HookedOnly)
|
|
self.weights: dict = None
|
|
self.weights_clip: dict = None
|
|
self.need_weight_init = True
|
|
self._strength_model = strength_model
|
|
self._strength_clip = strength_clip
|
|
self.hook_scope = EnumHookScope.HookedOnly # this value does not matter for WeightHooks, just for docs
|
|
|
|
@property
|
|
def strength_model(self):
|
|
return self._strength_model * self.strength
|
|
|
|
@property
|
|
def strength_clip(self):
|
|
return self._strength_clip * self.strength
|
|
|
|
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
|
|
if not self.should_register(model, model_options, target_dict, registered):
|
|
return False
|
|
weights = None
|
|
|
|
target = target_dict.get('target', None)
|
|
if target == EnumWeightTarget.Clip:
|
|
strength = self._strength_clip
|
|
else:
|
|
strength = self._strength_model
|
|
|
|
if self.need_weight_init:
|
|
key_map = {}
|
|
if target == EnumWeightTarget.Clip:
|
|
key_map = comfy.lora.model_lora_keys_clip(model.model, key_map)
|
|
else:
|
|
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
|
|
weights = comfy.lora.load_lora(self.weights, key_map, log_missing=False)
|
|
else:
|
|
if target == EnumWeightTarget.Clip:
|
|
weights = self.weights_clip
|
|
else:
|
|
weights = self.weights
|
|
model.add_hook_patches(hook=self, patches=weights, strength_patch=strength)
|
|
registered.add(self)
|
|
return True
|
|
# TODO: add logs about any keys that were not applied
|
|
|
|
def clone(self):
|
|
c: WeightHook = super().clone()
|
|
c.weights = self.weights
|
|
c.weights_clip = self.weights_clip
|
|
c.need_weight_init = self.need_weight_init
|
|
c._strength_model = self._strength_model
|
|
c._strength_clip = self._strength_clip
|
|
return c
|
|
|
|
class ObjectPatchHook(Hook):
|
|
def __init__(self, object_patches: dict[str]=None,
|
|
hook_scope=EnumHookScope.AllConditioning):
|
|
super().__init__(hook_type=EnumHookType.ObjectPatch)
|
|
self.object_patches = object_patches
|
|
self.hook_scope = hook_scope
|
|
|
|
def clone(self):
|
|
c: ObjectPatchHook = super().clone()
|
|
c.object_patches = self.object_patches
|
|
return c
|
|
|
|
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
|
|
raise NotImplementedError("ObjectPatchHook is not supported yet in ComfyUI.")
|
|
if not self.should_register(model, model_options, target_dict, registered):
|
|
return False
|
|
registered.add(self)
|
|
return True
|
|
|
|
class AddModelsHook(Hook):
|
|
'''
|
|
Hook responsible for telling model management any additional models that should be loaded.
|
|
|
|
Note, value of hook_scope is ignored and is treated as AllConditioning.
|
|
'''
|
|
def __init__(self, models: list[ModelPatcher]=None, key: str=None):
|
|
super().__init__(hook_type=EnumHookType.AddModels)
|
|
self.models = models
|
|
self.key = key
|
|
|
|
def clone(self):
|
|
c: AddModelsHook = super().clone()
|
|
c.models = self.models.copy() if self.models else self.models
|
|
c.key = self.key
|
|
return c
|
|
|
|
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
|
|
if not self.should_register(model, model_options, target_dict, registered):
|
|
return False
|
|
registered.add(self)
|
|
return True
|
|
|
|
class TransformerOptionsHook(Hook):
|
|
'''
|
|
Hook responsible for adding wrappers, callbacks, patches, or anything else related to transformer_options.
|
|
'''
|
|
def __init__(self, transformers_dict: dict[str, dict[str, dict[str, list[Callable]]]]=None,
|
|
hook_scope=EnumHookScope.AllConditioning):
|
|
super().__init__(hook_type=EnumHookType.TransformerOptions)
|
|
self.transformers_dict = transformers_dict
|
|
self.hook_scope = hook_scope
|
|
|
|
def clone(self):
|
|
c: TransformerOptionsHook = super().clone()
|
|
c.transformers_dict = self.transformers_dict
|
|
return c
|
|
|
|
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
|
|
if not self.should_register(model, model_options, target_dict, registered):
|
|
return False
|
|
# NOTE: to_load_options will be used to manually load patches/wrappers/callbacks from hooks
|
|
if self.hook_scope == EnumHookScope.AllConditioning:
|
|
add_model_options = {"transformer_options": self.transformers_dict,
|
|
"to_load_options": self.transformers_dict}
|
|
else:
|
|
add_model_options = {"to_load_options": self.transformers_dict}
|
|
# only register if will not be included in AllConditioning to avoid double loading
|
|
registered.add(self)
|
|
comfy.patcher_extension.merge_nested_dicts(model_options, add_model_options, copy_dict1=False)
|
|
return True
|
|
|
|
def on_apply_hooks(self, model: ModelPatcher, transformer_options: dict[str]):
|
|
comfy.patcher_extension.merge_nested_dicts(transformer_options, self.transformers_dict, copy_dict1=False)
|
|
|
|
WrapperHook = TransformerOptionsHook
|
|
'''Only here for backwards compatibility, WrapperHook is identical to TransformerOptionsHook.'''
|
|
|
|
class SetInjectionsHook(Hook):
|
|
def __init__(self, key: str=None, injections: list[PatcherInjection]=None,
|
|
hook_scope=EnumHookScope.AllConditioning):
|
|
super().__init__(hook_type=EnumHookType.Injections)
|
|
self.key = key
|
|
self.injections = injections
|
|
self.hook_scope = hook_scope
|
|
|
|
def clone(self):
|
|
c: SetInjectionsHook = super().clone()
|
|
c.key = self.key
|
|
c.injections = self.injections.copy() if self.injections else self.injections
|
|
return c
|
|
|
|
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
|
|
raise NotImplementedError("SetInjectionsHook is not supported yet in ComfyUI.")
|
|
if not self.should_register(model, model_options, target_dict, registered):
|
|
return False
|
|
registered.add(self)
|
|
return True
|
|
|
|
def add_hook_injections(self, model: ModelPatcher):
|
|
# TODO: add functionality
|
|
pass
|
|
|
|
class HookGroup:
|
|
'''
|
|
Stores groups of hooks, and allows them to be queried by type.
|
|
|
|
To prevent breaking their functionality, never modify the underlying self.hooks or self._hook_dict vars directly;
|
|
always use the provided functions on HookGroup.
|
|
'''
|
|
def __init__(self):
|
|
self.hooks: list[Hook] = []
|
|
self._hook_dict: dict[EnumHookType, list[Hook]] = {}
|
|
|
|
def __len__(self):
|
|
return len(self.hooks)
|
|
|
|
def add(self, hook: Hook):
|
|
if hook not in self.hooks:
|
|
self.hooks.append(hook)
|
|
self._hook_dict.setdefault(hook.hook_type, []).append(hook)
|
|
|
|
def remove(self, hook: Hook):
|
|
if hook in self.hooks:
|
|
self.hooks.remove(hook)
|
|
self._hook_dict[hook.hook_type].remove(hook)
|
|
|
|
def get_type(self, hook_type: EnumHookType):
|
|
return self._hook_dict.get(hook_type, [])
|
|
|
|
def contains(self, hook: Hook):
|
|
return hook in self.hooks
|
|
|
|
def is_subset_of(self, other: HookGroup):
|
|
self_hooks = set(self.hooks)
|
|
other_hooks = set(other.hooks)
|
|
return self_hooks.issubset(other_hooks)
|
|
|
|
def new_with_common_hooks(self, other: HookGroup):
|
|
c = HookGroup()
|
|
for hook in self.hooks:
|
|
if other.contains(hook):
|
|
c.add(hook.clone())
|
|
return c
|
|
|
|
def clone(self):
|
|
c = HookGroup()
|
|
for hook in self.hooks:
|
|
c.add(hook.clone())
|
|
return c
|
|
|
|
def clone_and_combine(self, other: HookGroup):
|
|
c = self.clone()
|
|
if other is not None:
|
|
for hook in other.hooks:
|
|
c.add(hook.clone())
|
|
return c
|
|
|
|
def set_keyframes_on_hooks(self, hook_kf: HookKeyframeGroup):
|
|
if hook_kf is None:
|
|
hook_kf = HookKeyframeGroup()
|
|
else:
|
|
hook_kf = hook_kf.clone()
|
|
for hook in self.hooks:
|
|
hook.hook_keyframe = hook_kf
|
|
|
|
def get_hooks_for_clip_schedule(self):
|
|
scheduled_hooks: dict[WeightHook, list[tuple[tuple[float,float], HookKeyframe]]] = {}
|
|
# only care about WeightHooks, for now
|
|
for hook in self.get_type(EnumHookType.Weight):
|
|
hook: WeightHook
|
|
hook_schedule = []
|
|
# if no hook keyframes, assign default value
|
|
if len(hook.hook_keyframe.keyframes) == 0:
|
|
hook_schedule.append(((0.0, 1.0), None))
|
|
scheduled_hooks[hook] = hook_schedule
|
|
continue
|
|
# find ranges of values
|
|
prev_keyframe = hook.hook_keyframe.keyframes[0]
|
|
for keyframe in hook.hook_keyframe.keyframes:
|
|
if keyframe.start_percent > prev_keyframe.start_percent and not math.isclose(keyframe.strength, prev_keyframe.strength):
|
|
hook_schedule.append(((prev_keyframe.start_percent, keyframe.start_percent), prev_keyframe))
|
|
prev_keyframe = keyframe
|
|
elif keyframe.start_percent == prev_keyframe.start_percent:
|
|
prev_keyframe = keyframe
|
|
# create final range, assuming last start_percent was not 1.0
|
|
if not math.isclose(prev_keyframe.start_percent, 1.0):
|
|
hook_schedule.append(((prev_keyframe.start_percent, 1.0), prev_keyframe))
|
|
scheduled_hooks[hook] = hook_schedule
|
|
# hooks should not have their schedules in a list of tuples
|
|
all_ranges: list[tuple[float, float]] = []
|
|
for range_kfs in scheduled_hooks.values():
|
|
for t_range, keyframe in range_kfs:
|
|
all_ranges.append(t_range)
|
|
# turn list of ranges into boundaries
|
|
boundaries_set = set(itertools.chain.from_iterable(all_ranges))
|
|
boundaries_set.add(0.0)
|
|
boundaries = sorted(boundaries_set)
|
|
real_ranges = [(boundaries[i], boundaries[i + 1]) for i in range(len(boundaries) - 1)]
|
|
# with real ranges defined, give appropriate hooks w/ keyframes for each range
|
|
scheduled_keyframes: list[tuple[tuple[float,float], list[tuple[WeightHook, HookKeyframe]]]] = []
|
|
for t_range in real_ranges:
|
|
hooks_schedule = []
|
|
for hook, val in scheduled_hooks.items():
|
|
keyframe = None
|
|
# check if is a keyframe that works for the current t_range
|
|
for stored_range, stored_kf in val:
|
|
# if stored start is less than current end, then fits - give it assigned keyframe
|
|
if stored_range[0] < t_range[1] and stored_range[1] > t_range[0]:
|
|
keyframe = stored_kf
|
|
break
|
|
hooks_schedule.append((hook, keyframe))
|
|
scheduled_keyframes.append((t_range, hooks_schedule))
|
|
return scheduled_keyframes
|
|
|
|
def reset(self):
|
|
for hook in self.hooks:
|
|
hook.reset()
|
|
|
|
@staticmethod
|
|
def combine_all_hooks(hooks_list: list[HookGroup], require_count=0) -> HookGroup:
|
|
actual: list[HookGroup] = []
|
|
for group in hooks_list:
|
|
if group is not None:
|
|
actual.append(group)
|
|
if len(actual) < require_count:
|
|
raise Exception(f"Need at least {require_count} hooks to combine, but only had {len(actual)}.")
|
|
# if no hooks, then return None
|
|
if len(actual) == 0:
|
|
return None
|
|
# if only 1 hook, just return itself without cloning
|
|
elif len(actual) == 1:
|
|
return actual[0]
|
|
final_hook: HookGroup = None
|
|
for hook in actual:
|
|
if final_hook is None:
|
|
final_hook = hook.clone()
|
|
else:
|
|
final_hook = final_hook.clone_and_combine(hook)
|
|
return final_hook
|
|
|
|
|
|
class HookKeyframe:
|
|
def __init__(self, strength: float, start_percent=0.0, guarantee_steps=1):
|
|
self.strength = strength
|
|
# scheduling
|
|
self.start_percent = float(start_percent)
|
|
self.start_t = 999999999.9
|
|
self.guarantee_steps = guarantee_steps
|
|
|
|
def get_effective_guarantee_steps(self, max_sigma: torch.Tensor):
|
|
'''If keyframe starts before current sampling range (max_sigma), treat as 0.'''
|
|
if self.start_t > max_sigma:
|
|
return 0
|
|
return self.guarantee_steps
|
|
|
|
def clone(self):
|
|
c = HookKeyframe(strength=self.strength,
|
|
start_percent=self.start_percent, guarantee_steps=self.guarantee_steps)
|
|
c.start_t = self.start_t
|
|
return c
|
|
|
|
class HookKeyframeGroup:
|
|
def __init__(self):
|
|
self.keyframes: list[HookKeyframe] = []
|
|
self._current_keyframe: HookKeyframe = None
|
|
self._current_used_steps = 0
|
|
self._current_index = 0
|
|
self._current_strength = None
|
|
self._curr_t = -1.
|
|
|
|
# properties shadow those of HookWeightsKeyframe
|
|
@property
|
|
def strength(self):
|
|
if self._current_keyframe is not None:
|
|
return self._current_keyframe.strength
|
|
return 1.0
|
|
|
|
def reset(self):
|
|
self._current_keyframe = None
|
|
self._current_used_steps = 0
|
|
self._current_index = 0
|
|
self._current_strength = None
|
|
self.curr_t = -1.
|
|
self._set_first_as_current()
|
|
|
|
def add(self, keyframe: HookKeyframe):
|
|
# add to end of list, then sort
|
|
self.keyframes.append(keyframe)
|
|
self.keyframes = get_sorted_list_via_attr(self.keyframes, "start_percent")
|
|
self._set_first_as_current()
|
|
|
|
def _set_first_as_current(self):
|
|
if len(self.keyframes) > 0:
|
|
self._current_keyframe = self.keyframes[0]
|
|
else:
|
|
self._current_keyframe = None
|
|
|
|
def has_guarantee_steps(self):
|
|
for kf in self.keyframes:
|
|
if kf.guarantee_steps > 0:
|
|
return True
|
|
return False
|
|
|
|
def has_index(self, index: int):
|
|
return index >= 0 and index < len(self.keyframes)
|
|
|
|
def is_empty(self):
|
|
return len(self.keyframes) == 0
|
|
|
|
def clone(self):
|
|
c = HookKeyframeGroup()
|
|
for keyframe in self.keyframes:
|
|
c.keyframes.append(keyframe.clone())
|
|
c._set_first_as_current()
|
|
return c
|
|
|
|
def initialize_timesteps(self, model: BaseModel):
|
|
for keyframe in self.keyframes:
|
|
keyframe.start_t = model.model_sampling.percent_to_sigma(keyframe.start_percent)
|
|
|
|
def prepare_current_keyframe(self, curr_t: float, transformer_options: dict[str, torch.Tensor]) -> bool:
|
|
if self.is_empty():
|
|
return False
|
|
if curr_t == self._curr_t:
|
|
return False
|
|
max_sigma = torch.max(transformer_options["sample_sigmas"])
|
|
prev_index = self._current_index
|
|
prev_strength = self._current_strength
|
|
# if met guaranteed steps, look for next keyframe in case need to switch
|
|
if self._current_used_steps >= self._current_keyframe.get_effective_guarantee_steps(max_sigma):
|
|
# if has next index, loop through and see if need to switch
|
|
if self.has_index(self._current_index+1):
|
|
for i in range(self._current_index+1, len(self.keyframes)):
|
|
eval_c = self.keyframes[i]
|
|
# check if start_t is greater or equal to curr_t
|
|
# NOTE: t is in terms of sigmas, not percent, so bigger number = earlier step in sampling
|
|
if eval_c.start_t >= curr_t:
|
|
self._current_index = i
|
|
self._current_strength = eval_c.strength
|
|
self._current_keyframe = eval_c
|
|
self._current_used_steps = 0
|
|
# if guarantee_steps greater than zero, stop searching for other keyframes
|
|
if self._current_keyframe.get_effective_guarantee_steps(max_sigma) > 0:
|
|
break
|
|
# if eval_c is outside the percent range, stop looking further
|
|
else: break
|
|
# update steps current context is used
|
|
self._current_used_steps += 1
|
|
# update current timestep this was performed on
|
|
self._curr_t = curr_t
|
|
# return True if keyframe changed, False if no change
|
|
return prev_index != self._current_index and prev_strength != self._current_strength
|
|
|
|
|
|
class InterpolationMethod:
|
|
LINEAR = "linear"
|
|
EASE_IN = "ease_in"
|
|
EASE_OUT = "ease_out"
|
|
EASE_IN_OUT = "ease_in_out"
|
|
|
|
_LIST = [LINEAR, EASE_IN, EASE_OUT, EASE_IN_OUT]
|
|
|
|
@classmethod
|
|
def get_weights(cls, num_from: float, num_to: float, length: int, method: str, reverse=False):
|
|
diff = num_to - num_from
|
|
if method == cls.LINEAR:
|
|
weights = torch.linspace(num_from, num_to, length)
|
|
elif method == cls.EASE_IN:
|
|
index = torch.linspace(0, 1, length)
|
|
weights = diff * np.power(index, 2) + num_from
|
|
elif method == cls.EASE_OUT:
|
|
index = torch.linspace(0, 1, length)
|
|
weights = diff * (1 - np.power(1 - index, 2)) + num_from
|
|
elif method == cls.EASE_IN_OUT:
|
|
index = torch.linspace(0, 1, length)
|
|
weights = diff * ((1 - np.cos(index * np.pi)) / 2) + num_from
|
|
else:
|
|
raise ValueError(f"Unrecognized interpolation method '{method}'.")
|
|
if reverse:
|
|
weights = weights.flip(dims=(0,))
|
|
return weights
|
|
|
|
def get_sorted_list_via_attr(objects: list, attr: str) -> list:
|
|
if not objects:
|
|
return objects
|
|
elif len(objects) <= 1:
|
|
return [x for x in objects]
|
|
# now that we know we have to sort, do it following these rules:
|
|
# a) if objects have same value of attribute, maintain their relative order
|
|
# b) perform sorting of the groups of objects with same attributes
|
|
unique_attrs = {}
|
|
for o in objects:
|
|
val_attr = getattr(o, attr)
|
|
attr_list: list = unique_attrs.get(val_attr, list())
|
|
attr_list.append(o)
|
|
if val_attr not in unique_attrs:
|
|
unique_attrs[val_attr] = attr_list
|
|
# now that we have the unique attr values grouped together in relative order, sort them by key
|
|
sorted_attrs = dict(sorted(unique_attrs.items()))
|
|
# now flatten out the dict into a list to return
|
|
sorted_list = []
|
|
for object_list in sorted_attrs.values():
|
|
sorted_list.extend(object_list)
|
|
return sorted_list
|
|
|
|
def create_transformer_options_from_hooks(model: ModelPatcher, hooks: HookGroup, transformer_options: dict[str]=None):
|
|
# if no hooks or is not a ModelPatcher for sampling, return empty dict
|
|
if hooks is None or model.is_clip:
|
|
return {}
|
|
if transformer_options is None:
|
|
transformer_options = {}
|
|
for hook in hooks.get_type(EnumHookType.TransformerOptions):
|
|
hook: TransformerOptionsHook
|
|
hook.on_apply_hooks(model, transformer_options)
|
|
return transformer_options
|
|
|
|
def create_hook_lora(lora: dict[str, torch.Tensor], strength_model: float, strength_clip: float):
|
|
hook_group = HookGroup()
|
|
hook = WeightHook(strength_model=strength_model, strength_clip=strength_clip)
|
|
hook_group.add(hook)
|
|
hook.weights = lora
|
|
return hook_group
|
|
|
|
def create_hook_model_as_lora(weights_model, weights_clip, strength_model: float, strength_clip: float):
|
|
hook_group = HookGroup()
|
|
hook = WeightHook(strength_model=strength_model, strength_clip=strength_clip)
|
|
hook_group.add(hook)
|
|
patches_model = None
|
|
patches_clip = None
|
|
if weights_model is not None:
|
|
patches_model = {}
|
|
for key in weights_model:
|
|
patches_model[key] = ("model_as_lora", (weights_model[key],))
|
|
if weights_clip is not None:
|
|
patches_clip = {}
|
|
for key in weights_clip:
|
|
patches_clip[key] = ("model_as_lora", (weights_clip[key],))
|
|
hook.weights = patches_model
|
|
hook.weights_clip = patches_clip
|
|
hook.need_weight_init = False
|
|
return hook_group
|
|
|
|
def get_patch_weights_from_model(model: ModelPatcher, discard_model_sampling=True):
|
|
if model is None:
|
|
return None
|
|
patches_model: dict[str, torch.Tensor] = model.model.state_dict()
|
|
if discard_model_sampling:
|
|
# do not include ANY model_sampling components of the model that should act as a patch
|
|
for key in list(patches_model.keys()):
|
|
if key.startswith("model_sampling"):
|
|
patches_model.pop(key, None)
|
|
return patches_model
|
|
|
|
# NOTE: this function shows how to register weight hooks directly on the ModelPatchers
|
|
def load_hook_lora_for_models(model: ModelPatcher, clip: CLIP, lora: dict[str, torch.Tensor],
|
|
strength_model: float, strength_clip: float):
|
|
key_map = {}
|
|
if model is not None:
|
|
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
|
|
if clip is not None:
|
|
key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)
|
|
|
|
hook_group = HookGroup()
|
|
hook = WeightHook()
|
|
hook_group.add(hook)
|
|
loaded: dict[str] = comfy.lora.load_lora(lora, key_map)
|
|
if model is not None:
|
|
new_modelpatcher = model.clone()
|
|
k = new_modelpatcher.add_hook_patches(hook=hook, patches=loaded, strength_patch=strength_model)
|
|
else:
|
|
k = ()
|
|
new_modelpatcher = None
|
|
|
|
if clip is not None:
|
|
new_clip = clip.clone()
|
|
k1 = new_clip.patcher.add_hook_patches(hook=hook, patches=loaded, strength_patch=strength_clip)
|
|
else:
|
|
k1 = ()
|
|
new_clip = None
|
|
k = set(k)
|
|
k1 = set(k1)
|
|
for x in loaded:
|
|
if (x not in k) and (x not in k1):
|
|
logging.warning(f"NOT LOADED {x}")
|
|
return (new_modelpatcher, new_clip, hook_group)
|
|
|
|
def _combine_hooks_from_values(c_dict: dict[str, HookGroup], values: dict[str, HookGroup], cache: dict[tuple[HookGroup, HookGroup], HookGroup]):
|
|
hooks_key = 'hooks'
|
|
# if hooks only exist in one dict, do what's needed so that it ends up in c_dict
|
|
if hooks_key not in values:
|
|
return
|
|
if hooks_key not in c_dict:
|
|
hooks_value = values.get(hooks_key, None)
|
|
if hooks_value is not None:
|
|
c_dict[hooks_key] = hooks_value
|
|
return
|
|
# otherwise, need to combine with minimum duplication via cache
|
|
hooks_tuple = (c_dict[hooks_key], values[hooks_key])
|
|
cached_hooks = cache.get(hooks_tuple, None)
|
|
if cached_hooks is None:
|
|
new_hooks = hooks_tuple[0].clone_and_combine(hooks_tuple[1])
|
|
cache[hooks_tuple] = new_hooks
|
|
c_dict[hooks_key] = new_hooks
|
|
else:
|
|
c_dict[hooks_key] = cache[hooks_tuple]
|
|
|
|
def conditioning_set_values_with_hooks(conditioning, values={}, append_hooks=True,
|
|
cache: dict[tuple[HookGroup, HookGroup], HookGroup]=None):
|
|
c = []
|
|
if cache is None:
|
|
cache = {}
|
|
for t in conditioning:
|
|
n = [t[0], t[1].copy()]
|
|
for k in values:
|
|
if append_hooks and k == 'hooks':
|
|
_combine_hooks_from_values(n[1], values, cache)
|
|
else:
|
|
n[1][k] = values[k]
|
|
c.append(n)
|
|
|
|
return c
|
|
|
|
def set_hooks_for_conditioning(cond, hooks: HookGroup, append_hooks=True, cache: dict[tuple[HookGroup, HookGroup], HookGroup]=None):
|
|
if hooks is None:
|
|
return cond
|
|
return conditioning_set_values_with_hooks(cond, {'hooks': hooks}, append_hooks=append_hooks, cache=cache)
|
|
|
|
def set_timesteps_for_conditioning(cond, timestep_range: tuple[float,float]):
|
|
if timestep_range is None:
|
|
return cond
|
|
return conditioning_set_values(cond, {"start_percent": timestep_range[0],
|
|
"end_percent": timestep_range[1]})
|
|
|
|
def set_mask_for_conditioning(cond, mask: torch.Tensor, set_cond_area: str, strength: float):
|
|
if mask is None:
|
|
return cond
|
|
set_area_to_bounds = False
|
|
if set_cond_area != 'default':
|
|
set_area_to_bounds = True
|
|
if len(mask.shape) < 3:
|
|
mask = mask.unsqueeze(0)
|
|
return conditioning_set_values(cond, {'mask': mask,
|
|
'set_area_to_bounds': set_area_to_bounds,
|
|
'mask_strength': strength})
|
|
|
|
def combine_conditioning(conds: list):
|
|
combined_conds = []
|
|
for cond in conds:
|
|
combined_conds.extend(cond)
|
|
return combined_conds
|
|
|
|
def combine_with_new_conds(conds: list, new_conds: list):
|
|
combined_conds = []
|
|
for c, new_c in zip(conds, new_conds):
|
|
combined_conds.append(combine_conditioning([c, new_c]))
|
|
return combined_conds
|
|
|
|
def set_conds_props(conds: list, strength: float, set_cond_area: str,
|
|
mask: torch.Tensor=None, hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
|
|
final_conds = []
|
|
cache = {}
|
|
for c in conds:
|
|
# first, apply lora_hook to conditioning, if provided
|
|
c = set_hooks_for_conditioning(c, hooks, append_hooks=append_hooks, cache=cache)
|
|
# next, apply mask to conditioning
|
|
c = set_mask_for_conditioning(cond=c, mask=mask, strength=strength, set_cond_area=set_cond_area)
|
|
# apply timesteps, if present
|
|
c = set_timesteps_for_conditioning(cond=c, timestep_range=timesteps_range)
|
|
# finally, apply mask to conditioning and store
|
|
final_conds.append(c)
|
|
return final_conds
|
|
|
|
def set_conds_props_and_combine(conds: list, new_conds: list, strength: float=1.0, set_cond_area: str="default",
|
|
mask: torch.Tensor=None, hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
|
|
combined_conds = []
|
|
cache = {}
|
|
for c, masked_c in zip(conds, new_conds):
|
|
# first, apply lora_hook to new conditioning, if provided
|
|
masked_c = set_hooks_for_conditioning(masked_c, hooks, append_hooks=append_hooks, cache=cache)
|
|
# next, apply mask to new conditioning, if provided
|
|
masked_c = set_mask_for_conditioning(cond=masked_c, mask=mask, set_cond_area=set_cond_area, strength=strength)
|
|
# apply timesteps, if present
|
|
masked_c = set_timesteps_for_conditioning(cond=masked_c, timestep_range=timesteps_range)
|
|
# finally, combine with existing conditioning and store
|
|
combined_conds.append(combine_conditioning([c, masked_c]))
|
|
return combined_conds
|
|
|
|
def set_default_conds_and_combine(conds: list, new_conds: list,
|
|
hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
|
|
combined_conds = []
|
|
cache = {}
|
|
for c, new_c in zip(conds, new_conds):
|
|
# first, apply lora_hook to new conditioning, if provided
|
|
new_c = set_hooks_for_conditioning(new_c, hooks, append_hooks=append_hooks, cache=cache)
|
|
# next, add default_cond key to cond so that during sampling, it can be identified
|
|
new_c = conditioning_set_values(new_c, {'default': True})
|
|
# apply timesteps, if present
|
|
new_c = set_timesteps_for_conditioning(cond=new_c, timestep_range=timesteps_range)
|
|
# finally, combine with existing conditioning and store
|
|
combined_conds.append(combine_conditioning([c, new_c]))
|
|
return combined_conds
|