ComfyUI/comfy/hooks.py
2025-01-06 02:23:04 -06:00

789 lines
32 KiB
Python

from __future__ import annotations
from typing import TYPE_CHECKING, Callable
import enum
import math
import torch
import numpy as np
import itertools
import logging
if TYPE_CHECKING:
from comfy.model_patcher import ModelPatcher, PatcherInjection
from comfy.model_base import BaseModel
from comfy.sd import CLIP
import comfy.lora
import comfy.model_management
import comfy.patcher_extension
from node_helpers import conditioning_set_values
# #######################################################################################################
# Hooks explanation
# -------------------
# The purpose of hooks is to allow conds to influence sampling without the need for ComfyUI core code to
# make explicit special cases like it does for ControlNet and GLIGEN.
#
# This is necessary for nodes/features that are intended for use with masked or scheduled conds, or those
# that should run special code when a 'marked' cond is used in sampling.
# #######################################################################################################
class EnumHookMode(enum.Enum):
'''
Priority of hook memory optimization vs. speed, mostly related to WeightHooks.
MinVram: No caching will occur for any operations related to hooks.
MaxSpeed: Excess VRAM (and RAM, once VRAM is sufficiently depleted) will be used to cache hook weights when switching hook groups.
'''
MinVram = "minvram"
MaxSpeed = "maxspeed"
class EnumHookType(enum.Enum):
'''
Hook types, each of which has different expected behavior.
'''
Weight = "weight"
ObjectPatch = "object_patch"
AddModels = "add_models"
TransformerOptions = "transformer_options"
Injections = "add_injections"
class EnumWeightTarget(enum.Enum):
Model = "model"
Clip = "clip"
class EnumHookScope(enum.Enum):
'''
Determines if hook should be limited in its influence over sampling.
AllConditioning: hook will affect all conds used in sampling.
HookedOnly: hook will only affect the conds it was attached to.
'''
AllConditioning = "all_conditioning"
HookedOnly = "hooked_only"
class _HookRef:
pass
def default_should_register(hook: Hook, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
'''Example for how should_register function should look like.'''
return True
def create_target_dict(target: EnumWeightTarget=None, **kwargs) -> dict[str]:
'''Creates base dictionary for use with Hooks' target param.'''
d = {}
if target is not None:
d['target'] = target
d.update(kwargs)
return d
class Hook:
def __init__(self, hook_type: EnumHookType=None, hook_ref: _HookRef=None, hook_id: str=None,
hook_keyframe: HookKeyframeGroup=None, hook_scope=EnumHookScope.AllConditioning):
self.hook_type = hook_type
self.hook_ref = hook_ref if hook_ref else _HookRef()
self.hook_id = hook_id
self.hook_keyframe = hook_keyframe if hook_keyframe else HookKeyframeGroup()
self.hook_scope = hook_scope
self.custom_should_register = default_should_register
self.auto_apply_to_nonpositive = False
@property
def strength(self):
return self.hook_keyframe.strength
def initialize_timesteps(self, model: BaseModel):
self.reset()
self.hook_keyframe.initialize_timesteps(model)
def reset(self):
self.hook_keyframe.reset()
def clone(self):
c: Hook = self.__class__()
c.hook_type = self.hook_type
c.hook_ref = self.hook_ref
c.hook_id = self.hook_id
c.hook_keyframe = self.hook_keyframe
c.hook_scope = self.hook_scope
c.custom_should_register = self.custom_should_register
# TODO: make this do something
c.auto_apply_to_nonpositive = self.auto_apply_to_nonpositive
return c
def should_register(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
return self.custom_should_register(self, model, model_options, target_dict, registered)
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
raise NotImplementedError("add_hook_patches should be defined for Hook subclasses")
def __eq__(self, other: Hook):
return self.__class__ == other.__class__ and self.hook_ref == other.hook_ref
def __hash__(self):
return hash(self.hook_ref)
class WeightHook(Hook):
'''
Hook responsible for tracking weights to be applied to some model/clip.
Note, value of hook_scope is ignored and is treated as HookedOnly.
'''
def __init__(self, strength_model=1.0, strength_clip=1.0):
super().__init__(hook_type=EnumHookType.Weight, hook_scope=EnumHookScope.HookedOnly)
self.weights: dict = None
self.weights_clip: dict = None
self.need_weight_init = True
self._strength_model = strength_model
self._strength_clip = strength_clip
self.hook_scope = EnumHookScope.HookedOnly # this value does not matter for WeightHooks, just for docs
@property
def strength_model(self):
return self._strength_model * self.strength
@property
def strength_clip(self):
return self._strength_clip * self.strength
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
if not self.should_register(model, model_options, target_dict, registered):
return False
weights = None
target = target_dict.get('target', None)
if target == EnumWeightTarget.Clip:
strength = self._strength_clip
else:
strength = self._strength_model
if self.need_weight_init:
key_map = {}
if target == EnumWeightTarget.Clip:
key_map = comfy.lora.model_lora_keys_clip(model.model, key_map)
else:
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
weights = comfy.lora.load_lora(self.weights, key_map, log_missing=False)
else:
if target == EnumWeightTarget.Clip:
weights = self.weights_clip
else:
weights = self.weights
model.add_hook_patches(hook=self, patches=weights, strength_patch=strength)
registered.add(self)
return True
# TODO: add logs about any keys that were not applied
def clone(self):
c: WeightHook = super().clone()
c.weights = self.weights
c.weights_clip = self.weights_clip
c.need_weight_init = self.need_weight_init
c._strength_model = self._strength_model
c._strength_clip = self._strength_clip
return c
class ObjectPatchHook(Hook):
def __init__(self, object_patches: dict[str]=None,
hook_scope=EnumHookScope.AllConditioning):
super().__init__(hook_type=EnumHookType.ObjectPatch)
self.object_patches = object_patches
self.hook_scope = hook_scope
def clone(self):
c: ObjectPatchHook = super().clone()
c.object_patches = self.object_patches
return c
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
raise NotImplementedError("ObjectPatchHook is not supported yet in ComfyUI.")
if not self.should_register(model, model_options, target_dict, registered):
return False
registered.add(self)
return True
class AddModelsHook(Hook):
'''
Hook responsible for telling model management any additional models that should be loaded.
Note, value of hook_scope is ignored and is treated as AllConditioning.
'''
def __init__(self, models: list[ModelPatcher]=None, key: str=None):
super().__init__(hook_type=EnumHookType.AddModels)
self.models = models
self.key = key
def clone(self):
c: AddModelsHook = super().clone()
c.models = self.models.copy() if self.models else self.models
c.key = self.key
return c
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
if not self.should_register(model, model_options, target_dict, registered):
return False
registered.add(self)
return True
class TransformerOptionsHook(Hook):
'''
Hook responsible for adding wrappers, callbacks, patches, or anything else related to transformer_options.
'''
def __init__(self, transformers_dict: dict[str, dict[str, dict[str, list[Callable]]]]=None,
hook_scope=EnumHookScope.AllConditioning):
super().__init__(hook_type=EnumHookType.TransformerOptions)
self.transformers_dict = transformers_dict
self.hook_scope = hook_scope
def clone(self):
c: TransformerOptionsHook = super().clone()
c.transformers_dict = self.transformers_dict
return c
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
if not self.should_register(model, model_options, target_dict, registered):
return False
# NOTE: to_load_options will be used to manually load patches/wrappers/callbacks from hooks
if self.hook_scope == EnumHookScope.AllConditioning:
add_model_options = {"transformer_options": self.transformers_dict,
"to_load_options": self.transformers_dict}
else:
add_model_options = {"to_load_options": self.transformers_dict}
# only register if will not be included in AllConditioning to avoid double loading
registered.add(self)
comfy.patcher_extension.merge_nested_dicts(model_options, add_model_options, copy_dict1=False)
return True
def on_apply_hooks(self, model: ModelPatcher, transformer_options: dict[str]):
comfy.patcher_extension.merge_nested_dicts(transformer_options, self.transformers_dict, copy_dict1=False)
WrapperHook = TransformerOptionsHook
'''Only here for backwards compatibility, WrapperHook is identical to TransformerOptionsHook.'''
class SetInjectionsHook(Hook):
def __init__(self, key: str=None, injections: list[PatcherInjection]=None,
hook_scope=EnumHookScope.AllConditioning):
super().__init__(hook_type=EnumHookType.Injections)
self.key = key
self.injections = injections
self.hook_scope = hook_scope
def clone(self):
c: SetInjectionsHook = super().clone()
c.key = self.key
c.injections = self.injections.copy() if self.injections else self.injections
return c
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
raise NotImplementedError("SetInjectionsHook is not supported yet in ComfyUI.")
if not self.should_register(model, model_options, target_dict, registered):
return False
registered.add(self)
return True
def add_hook_injections(self, model: ModelPatcher):
# TODO: add functionality
pass
class HookGroup:
'''
Stores groups of hooks, and allows them to be queried by type.
To prevent breaking their functionality, never modify the underlying self.hooks or self._hook_dict vars directly;
always use the provided functions on HookGroup.
'''
def __init__(self):
self.hooks: list[Hook] = []
self._hook_dict: dict[EnumHookType, list[Hook]] = {}
def __len__(self):
return len(self.hooks)
def add(self, hook: Hook):
if hook not in self.hooks:
self.hooks.append(hook)
self._hook_dict.setdefault(hook.hook_type, []).append(hook)
def remove(self, hook: Hook):
if hook in self.hooks:
self.hooks.remove(hook)
self._hook_dict[hook.hook_type].remove(hook)
def get_type(self, hook_type: EnumHookType):
return self._hook_dict.get(hook_type, [])
def contains(self, hook: Hook):
return hook in self.hooks
def is_subset_of(self, other: HookGroup):
self_hooks = set(self.hooks)
other_hooks = set(other.hooks)
return self_hooks.issubset(other_hooks)
def new_with_common_hooks(self, other: HookGroup):
c = HookGroup()
for hook in self.hooks:
if other.contains(hook):
c.add(hook.clone())
return c
def clone(self):
c = HookGroup()
for hook in self.hooks:
c.add(hook.clone())
return c
def clone_and_combine(self, other: HookGroup):
c = self.clone()
if other is not None:
for hook in other.hooks:
c.add(hook.clone())
return c
def set_keyframes_on_hooks(self, hook_kf: HookKeyframeGroup):
if hook_kf is None:
hook_kf = HookKeyframeGroup()
else:
hook_kf = hook_kf.clone()
for hook in self.hooks:
hook.hook_keyframe = hook_kf
def get_hooks_for_clip_schedule(self):
scheduled_hooks: dict[WeightHook, list[tuple[tuple[float,float], HookKeyframe]]] = {}
# only care about WeightHooks, for now
for hook in self.get_type(EnumHookType.Weight):
hook: WeightHook
hook_schedule = []
# if no hook keyframes, assign default value
if len(hook.hook_keyframe.keyframes) == 0:
hook_schedule.append(((0.0, 1.0), None))
scheduled_hooks[hook] = hook_schedule
continue
# find ranges of values
prev_keyframe = hook.hook_keyframe.keyframes[0]
for keyframe in hook.hook_keyframe.keyframes:
if keyframe.start_percent > prev_keyframe.start_percent and not math.isclose(keyframe.strength, prev_keyframe.strength):
hook_schedule.append(((prev_keyframe.start_percent, keyframe.start_percent), prev_keyframe))
prev_keyframe = keyframe
elif keyframe.start_percent == prev_keyframe.start_percent:
prev_keyframe = keyframe
# create final range, assuming last start_percent was not 1.0
if not math.isclose(prev_keyframe.start_percent, 1.0):
hook_schedule.append(((prev_keyframe.start_percent, 1.0), prev_keyframe))
scheduled_hooks[hook] = hook_schedule
# hooks should not have their schedules in a list of tuples
all_ranges: list[tuple[float, float]] = []
for range_kfs in scheduled_hooks.values():
for t_range, keyframe in range_kfs:
all_ranges.append(t_range)
# turn list of ranges into boundaries
boundaries_set = set(itertools.chain.from_iterable(all_ranges))
boundaries_set.add(0.0)
boundaries = sorted(boundaries_set)
real_ranges = [(boundaries[i], boundaries[i + 1]) for i in range(len(boundaries) - 1)]
# with real ranges defined, give appropriate hooks w/ keyframes for each range
scheduled_keyframes: list[tuple[tuple[float,float], list[tuple[WeightHook, HookKeyframe]]]] = []
for t_range in real_ranges:
hooks_schedule = []
for hook, val in scheduled_hooks.items():
keyframe = None
# check if is a keyframe that works for the current t_range
for stored_range, stored_kf in val:
# if stored start is less than current end, then fits - give it assigned keyframe
if stored_range[0] < t_range[1] and stored_range[1] > t_range[0]:
keyframe = stored_kf
break
hooks_schedule.append((hook, keyframe))
scheduled_keyframes.append((t_range, hooks_schedule))
return scheduled_keyframes
def reset(self):
for hook in self.hooks:
hook.reset()
@staticmethod
def combine_all_hooks(hooks_list: list[HookGroup], require_count=0) -> HookGroup:
actual: list[HookGroup] = []
for group in hooks_list:
if group is not None:
actual.append(group)
if len(actual) < require_count:
raise Exception(f"Need at least {require_count} hooks to combine, but only had {len(actual)}.")
# if no hooks, then return None
if len(actual) == 0:
return None
# if only 1 hook, just return itself without cloning
elif len(actual) == 1:
return actual[0]
final_hook: HookGroup = None
for hook in actual:
if final_hook is None:
final_hook = hook.clone()
else:
final_hook = final_hook.clone_and_combine(hook)
return final_hook
class HookKeyframe:
def __init__(self, strength: float, start_percent=0.0, guarantee_steps=1):
self.strength = strength
# scheduling
self.start_percent = float(start_percent)
self.start_t = 999999999.9
self.guarantee_steps = guarantee_steps
def get_effective_guarantee_steps(self, max_sigma: torch.Tensor):
'''If keyframe starts before current sampling range (max_sigma), treat as 0.'''
if self.start_t > max_sigma:
return 0
return self.guarantee_steps
def clone(self):
c = HookKeyframe(strength=self.strength,
start_percent=self.start_percent, guarantee_steps=self.guarantee_steps)
c.start_t = self.start_t
return c
class HookKeyframeGroup:
def __init__(self):
self.keyframes: list[HookKeyframe] = []
self._current_keyframe: HookKeyframe = None
self._current_used_steps = 0
self._current_index = 0
self._current_strength = None
self._curr_t = -1.
# properties shadow those of HookWeightsKeyframe
@property
def strength(self):
if self._current_keyframe is not None:
return self._current_keyframe.strength
return 1.0
def reset(self):
self._current_keyframe = None
self._current_used_steps = 0
self._current_index = 0
self._current_strength = None
self.curr_t = -1.
self._set_first_as_current()
def add(self, keyframe: HookKeyframe):
# add to end of list, then sort
self.keyframes.append(keyframe)
self.keyframes = get_sorted_list_via_attr(self.keyframes, "start_percent")
self._set_first_as_current()
def _set_first_as_current(self):
if len(self.keyframes) > 0:
self._current_keyframe = self.keyframes[0]
else:
self._current_keyframe = None
def has_guarantee_steps(self):
for kf in self.keyframes:
if kf.guarantee_steps > 0:
return True
return False
def has_index(self, index: int):
return index >= 0 and index < len(self.keyframes)
def is_empty(self):
return len(self.keyframes) == 0
def clone(self):
c = HookKeyframeGroup()
for keyframe in self.keyframes:
c.keyframes.append(keyframe.clone())
c._set_first_as_current()
return c
def initialize_timesteps(self, model: BaseModel):
for keyframe in self.keyframes:
keyframe.start_t = model.model_sampling.percent_to_sigma(keyframe.start_percent)
def prepare_current_keyframe(self, curr_t: float, transformer_options: dict[str, torch.Tensor]) -> bool:
if self.is_empty():
return False
if curr_t == self._curr_t:
return False
max_sigma = torch.max(transformer_options["sample_sigmas"])
prev_index = self._current_index
prev_strength = self._current_strength
# if met guaranteed steps, look for next keyframe in case need to switch
if self._current_used_steps >= self._current_keyframe.get_effective_guarantee_steps(max_sigma):
# if has next index, loop through and see if need to switch
if self.has_index(self._current_index+1):
for i in range(self._current_index+1, len(self.keyframes)):
eval_c = self.keyframes[i]
# check if start_t is greater or equal to curr_t
# NOTE: t is in terms of sigmas, not percent, so bigger number = earlier step in sampling
if eval_c.start_t >= curr_t:
self._current_index = i
self._current_strength = eval_c.strength
self._current_keyframe = eval_c
self._current_used_steps = 0
# if guarantee_steps greater than zero, stop searching for other keyframes
if self._current_keyframe.get_effective_guarantee_steps(max_sigma) > 0:
break
# if eval_c is outside the percent range, stop looking further
else: break
# update steps current context is used
self._current_used_steps += 1
# update current timestep this was performed on
self._curr_t = curr_t
# return True if keyframe changed, False if no change
return prev_index != self._current_index and prev_strength != self._current_strength
class InterpolationMethod:
LINEAR = "linear"
EASE_IN = "ease_in"
EASE_OUT = "ease_out"
EASE_IN_OUT = "ease_in_out"
_LIST = [LINEAR, EASE_IN, EASE_OUT, EASE_IN_OUT]
@classmethod
def get_weights(cls, num_from: float, num_to: float, length: int, method: str, reverse=False):
diff = num_to - num_from
if method == cls.LINEAR:
weights = torch.linspace(num_from, num_to, length)
elif method == cls.EASE_IN:
index = torch.linspace(0, 1, length)
weights = diff * np.power(index, 2) + num_from
elif method == cls.EASE_OUT:
index = torch.linspace(0, 1, length)
weights = diff * (1 - np.power(1 - index, 2)) + num_from
elif method == cls.EASE_IN_OUT:
index = torch.linspace(0, 1, length)
weights = diff * ((1 - np.cos(index * np.pi)) / 2) + num_from
else:
raise ValueError(f"Unrecognized interpolation method '{method}'.")
if reverse:
weights = weights.flip(dims=(0,))
return weights
def get_sorted_list_via_attr(objects: list, attr: str) -> list:
if not objects:
return objects
elif len(objects) <= 1:
return [x for x in objects]
# now that we know we have to sort, do it following these rules:
# a) if objects have same value of attribute, maintain their relative order
# b) perform sorting of the groups of objects with same attributes
unique_attrs = {}
for o in objects:
val_attr = getattr(o, attr)
attr_list: list = unique_attrs.get(val_attr, list())
attr_list.append(o)
if val_attr not in unique_attrs:
unique_attrs[val_attr] = attr_list
# now that we have the unique attr values grouped together in relative order, sort them by key
sorted_attrs = dict(sorted(unique_attrs.items()))
# now flatten out the dict into a list to return
sorted_list = []
for object_list in sorted_attrs.values():
sorted_list.extend(object_list)
return sorted_list
def create_transformer_options_from_hooks(model: ModelPatcher, hooks: HookGroup, transformer_options: dict[str]=None):
# if no hooks or is not a ModelPatcher for sampling, return empty dict
if hooks is None or model.is_clip:
return {}
if transformer_options is None:
transformer_options = {}
for hook in hooks.get_type(EnumHookType.TransformerOptions):
hook: TransformerOptionsHook
hook.on_apply_hooks(model, transformer_options)
return transformer_options
def create_hook_lora(lora: dict[str, torch.Tensor], strength_model: float, strength_clip: float):
hook_group = HookGroup()
hook = WeightHook(strength_model=strength_model, strength_clip=strength_clip)
hook_group.add(hook)
hook.weights = lora
return hook_group
def create_hook_model_as_lora(weights_model, weights_clip, strength_model: float, strength_clip: float):
hook_group = HookGroup()
hook = WeightHook(strength_model=strength_model, strength_clip=strength_clip)
hook_group.add(hook)
patches_model = None
patches_clip = None
if weights_model is not None:
patches_model = {}
for key in weights_model:
patches_model[key] = ("model_as_lora", (weights_model[key],))
if weights_clip is not None:
patches_clip = {}
for key in weights_clip:
patches_clip[key] = ("model_as_lora", (weights_clip[key],))
hook.weights = patches_model
hook.weights_clip = patches_clip
hook.need_weight_init = False
return hook_group
def get_patch_weights_from_model(model: ModelPatcher, discard_model_sampling=True):
if model is None:
return None
patches_model: dict[str, torch.Tensor] = model.model.state_dict()
if discard_model_sampling:
# do not include ANY model_sampling components of the model that should act as a patch
for key in list(patches_model.keys()):
if key.startswith("model_sampling"):
patches_model.pop(key, None)
return patches_model
# NOTE: this function shows how to register weight hooks directly on the ModelPatchers
def load_hook_lora_for_models(model: ModelPatcher, clip: CLIP, lora: dict[str, torch.Tensor],
strength_model: float, strength_clip: float):
key_map = {}
if model is not None:
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
if clip is not None:
key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)
hook_group = HookGroup()
hook = WeightHook()
hook_group.add(hook)
loaded: dict[str] = comfy.lora.load_lora(lora, key_map)
if model is not None:
new_modelpatcher = model.clone()
k = new_modelpatcher.add_hook_patches(hook=hook, patches=loaded, strength_patch=strength_model)
else:
k = ()
new_modelpatcher = None
if clip is not None:
new_clip = clip.clone()
k1 = new_clip.patcher.add_hook_patches(hook=hook, patches=loaded, strength_patch=strength_clip)
else:
k1 = ()
new_clip = None
k = set(k)
k1 = set(k1)
for x in loaded:
if (x not in k) and (x not in k1):
logging.warning(f"NOT LOADED {x}")
return (new_modelpatcher, new_clip, hook_group)
def _combine_hooks_from_values(c_dict: dict[str, HookGroup], values: dict[str, HookGroup], cache: dict[tuple[HookGroup, HookGroup], HookGroup]):
hooks_key = 'hooks'
# if hooks only exist in one dict, do what's needed so that it ends up in c_dict
if hooks_key not in values:
return
if hooks_key not in c_dict:
hooks_value = values.get(hooks_key, None)
if hooks_value is not None:
c_dict[hooks_key] = hooks_value
return
# otherwise, need to combine with minimum duplication via cache
hooks_tuple = (c_dict[hooks_key], values[hooks_key])
cached_hooks = cache.get(hooks_tuple, None)
if cached_hooks is None:
new_hooks = hooks_tuple[0].clone_and_combine(hooks_tuple[1])
cache[hooks_tuple] = new_hooks
c_dict[hooks_key] = new_hooks
else:
c_dict[hooks_key] = cache[hooks_tuple]
def conditioning_set_values_with_hooks(conditioning, values={}, append_hooks=True,
cache: dict[tuple[HookGroup, HookGroup], HookGroup]=None):
c = []
if cache is None:
cache = {}
for t in conditioning:
n = [t[0], t[1].copy()]
for k in values:
if append_hooks and k == 'hooks':
_combine_hooks_from_values(n[1], values, cache)
else:
n[1][k] = values[k]
c.append(n)
return c
def set_hooks_for_conditioning(cond, hooks: HookGroup, append_hooks=True, cache: dict[tuple[HookGroup, HookGroup], HookGroup]=None):
if hooks is None:
return cond
return conditioning_set_values_with_hooks(cond, {'hooks': hooks}, append_hooks=append_hooks, cache=cache)
def set_timesteps_for_conditioning(cond, timestep_range: tuple[float,float]):
if timestep_range is None:
return cond
return conditioning_set_values(cond, {"start_percent": timestep_range[0],
"end_percent": timestep_range[1]})
def set_mask_for_conditioning(cond, mask: torch.Tensor, set_cond_area: str, strength: float):
if mask is None:
return cond
set_area_to_bounds = False
if set_cond_area != 'default':
set_area_to_bounds = True
if len(mask.shape) < 3:
mask = mask.unsqueeze(0)
return conditioning_set_values(cond, {'mask': mask,
'set_area_to_bounds': set_area_to_bounds,
'mask_strength': strength})
def combine_conditioning(conds: list):
combined_conds = []
for cond in conds:
combined_conds.extend(cond)
return combined_conds
def combine_with_new_conds(conds: list, new_conds: list):
combined_conds = []
for c, new_c in zip(conds, new_conds):
combined_conds.append(combine_conditioning([c, new_c]))
return combined_conds
def set_conds_props(conds: list, strength: float, set_cond_area: str,
mask: torch.Tensor=None, hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
final_conds = []
cache = {}
for c in conds:
# first, apply lora_hook to conditioning, if provided
c = set_hooks_for_conditioning(c, hooks, append_hooks=append_hooks, cache=cache)
# next, apply mask to conditioning
c = set_mask_for_conditioning(cond=c, mask=mask, strength=strength, set_cond_area=set_cond_area)
# apply timesteps, if present
c = set_timesteps_for_conditioning(cond=c, timestep_range=timesteps_range)
# finally, apply mask to conditioning and store
final_conds.append(c)
return final_conds
def set_conds_props_and_combine(conds: list, new_conds: list, strength: float=1.0, set_cond_area: str="default",
mask: torch.Tensor=None, hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
combined_conds = []
cache = {}
for c, masked_c in zip(conds, new_conds):
# first, apply lora_hook to new conditioning, if provided
masked_c = set_hooks_for_conditioning(masked_c, hooks, append_hooks=append_hooks, cache=cache)
# next, apply mask to new conditioning, if provided
masked_c = set_mask_for_conditioning(cond=masked_c, mask=mask, set_cond_area=set_cond_area, strength=strength)
# apply timesteps, if present
masked_c = set_timesteps_for_conditioning(cond=masked_c, timestep_range=timesteps_range)
# finally, combine with existing conditioning and store
combined_conds.append(combine_conditioning([c, masked_c]))
return combined_conds
def set_default_conds_and_combine(conds: list, new_conds: list,
hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
combined_conds = []
cache = {}
for c, new_c in zip(conds, new_conds):
# first, apply lora_hook to new conditioning, if provided
new_c = set_hooks_for_conditioning(new_c, hooks, append_hooks=append_hooks, cache=cache)
# next, add default_cond key to cond so that during sampling, it can be identified
new_c = conditioning_set_values(new_c, {'default': True})
# apply timesteps, if present
new_c = set_timesteps_for_conditioning(cond=new_c, timestep_range=timesteps_range)
# finally, combine with existing conditioning and store
combined_conds.append(combine_conditioning([c, new_c]))
return combined_conds