mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-12 02:45:16 +00:00
451 lines
18 KiB
Python
451 lines
18 KiB
Python
import os
|
|
|
|
from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextConfig, modeling_utils
|
|
import comfy.ops
|
|
import torch
|
|
import traceback
|
|
import zipfile
|
|
from . import model_management
|
|
import contextlib
|
|
|
|
class ClipTokenWeightEncoder:
|
|
def encode_token_weights(self, token_weight_pairs):
|
|
to_encode = list(self.empty_tokens)
|
|
for x in token_weight_pairs:
|
|
tokens = list(map(lambda a: a[0], x))
|
|
to_encode.append(tokens)
|
|
|
|
out, pooled = self.encode(to_encode)
|
|
z_empty = out[0:1]
|
|
if pooled.shape[0] > 1:
|
|
first_pooled = pooled[1:2]
|
|
else:
|
|
first_pooled = pooled[0:1]
|
|
|
|
output = []
|
|
for k in range(1, out.shape[0]):
|
|
z = out[k:k+1]
|
|
for i in range(len(z)):
|
|
for j in range(len(z[i])):
|
|
weight = token_weight_pairs[k - 1][j][1]
|
|
z[i][j] = (z[i][j] - z_empty[0][j]) * weight + z_empty[0][j]
|
|
output.append(z)
|
|
|
|
if (len(output) == 0):
|
|
return z_empty.cpu(), first_pooled.cpu()
|
|
return torch.cat(output, dim=-2).cpu(), first_pooled.cpu()
|
|
|
|
class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
|
"""Uses the CLIP transformer encoder for text (from huggingface)"""
|
|
LAYERS = [
|
|
"last",
|
|
"pooled",
|
|
"hidden"
|
|
]
|
|
def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77,
|
|
freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, textmodel_path=None, dtype=None): # clip-vit-base-patch32
|
|
super().__init__()
|
|
assert layer in self.LAYERS
|
|
self.num_layers = 12
|
|
if textmodel_path is not None:
|
|
self.transformer = CLIPTextModel.from_pretrained(textmodel_path)
|
|
else:
|
|
if textmodel_json_config is None:
|
|
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")
|
|
config = CLIPTextConfig.from_json_file(textmodel_json_config)
|
|
self.num_layers = config.num_hidden_layers
|
|
with comfy.ops.use_comfy_ops(device, dtype):
|
|
with modeling_utils.no_init_weights():
|
|
self.transformer = CLIPTextModel(config)
|
|
|
|
if dtype is not None:
|
|
self.transformer.to(dtype)
|
|
self.transformer.text_model.embeddings.token_embedding.to(torch.float32)
|
|
self.transformer.text_model.embeddings.position_embedding.to(torch.float32)
|
|
|
|
self.max_length = max_length
|
|
if freeze:
|
|
self.freeze()
|
|
self.layer = layer
|
|
self.layer_idx = None
|
|
self.empty_tokens = [[49406] + [49407] * 76]
|
|
self.text_projection = torch.nn.Parameter(torch.eye(self.transformer.get_input_embeddings().weight.shape[1]))
|
|
self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
|
|
self.enable_attention_masks = False
|
|
|
|
self.layer_norm_hidden_state = True
|
|
if layer == "hidden":
|
|
assert layer_idx is not None
|
|
assert abs(layer_idx) <= self.num_layers
|
|
self.clip_layer(layer_idx)
|
|
self.layer_default = (self.layer, self.layer_idx)
|
|
|
|
def freeze(self):
|
|
self.transformer = self.transformer.eval()
|
|
#self.train = disabled_train
|
|
for param in self.parameters():
|
|
param.requires_grad = False
|
|
|
|
def clip_layer(self, layer_idx):
|
|
if abs(layer_idx) >= self.num_layers:
|
|
self.layer = "last"
|
|
else:
|
|
self.layer = "hidden"
|
|
self.layer_idx = layer_idx
|
|
|
|
def reset_clip_layer(self):
|
|
self.layer = self.layer_default[0]
|
|
self.layer_idx = self.layer_default[1]
|
|
|
|
def set_up_textual_embeddings(self, tokens, current_embeds):
|
|
out_tokens = []
|
|
next_new_token = token_dict_size = current_embeds.weight.shape[0] - 1
|
|
embedding_weights = []
|
|
|
|
for x in tokens:
|
|
tokens_temp = []
|
|
for y in x:
|
|
if isinstance(y, int):
|
|
if y == token_dict_size: #EOS token
|
|
y = -1
|
|
tokens_temp += [y]
|
|
else:
|
|
if y.shape[0] == current_embeds.weight.shape[1]:
|
|
embedding_weights += [y]
|
|
tokens_temp += [next_new_token]
|
|
next_new_token += 1
|
|
else:
|
|
print("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored", y.shape[0], current_embeds.weight.shape[1])
|
|
while len(tokens_temp) < len(x):
|
|
tokens_temp += [self.empty_tokens[0][-1]]
|
|
out_tokens += [tokens_temp]
|
|
|
|
n = token_dict_size
|
|
if len(embedding_weights) > 0:
|
|
new_embedding = torch.nn.Embedding(next_new_token + 1, current_embeds.weight.shape[1], device=current_embeds.weight.device, dtype=current_embeds.weight.dtype)
|
|
new_embedding.weight[:token_dict_size] = current_embeds.weight[:-1]
|
|
for x in embedding_weights:
|
|
new_embedding.weight[n] = x
|
|
n += 1
|
|
new_embedding.weight[n] = current_embeds.weight[-1] #EOS embedding
|
|
self.transformer.set_input_embeddings(new_embedding)
|
|
|
|
processed_tokens = []
|
|
for x in out_tokens:
|
|
processed_tokens += [list(map(lambda a: n if a == -1 else a, x))] #The EOS token should always be the largest one
|
|
|
|
return processed_tokens
|
|
|
|
def forward(self, tokens):
|
|
backup_embeds = self.transformer.get_input_embeddings()
|
|
device = backup_embeds.weight.device
|
|
tokens = self.set_up_textual_embeddings(tokens, backup_embeds)
|
|
tokens = torch.LongTensor(tokens).to(device)
|
|
|
|
if self.transformer.text_model.final_layer_norm.weight.dtype != torch.float32:
|
|
precision_scope = torch.autocast
|
|
else:
|
|
precision_scope = lambda a, b: contextlib.nullcontext(a)
|
|
|
|
with precision_scope(model_management.get_autocast_device(device), torch.float32):
|
|
attention_mask = None
|
|
if self.enable_attention_masks:
|
|
attention_mask = torch.zeros_like(tokens)
|
|
max_token = self.transformer.get_input_embeddings().weight.shape[0] - 1
|
|
for x in range(attention_mask.shape[0]):
|
|
for y in range(attention_mask.shape[1]):
|
|
attention_mask[x, y] = 1
|
|
if tokens[x, y] == max_token:
|
|
break
|
|
|
|
outputs = self.transformer(input_ids=tokens, attention_mask=attention_mask, output_hidden_states=self.layer=="hidden")
|
|
self.transformer.set_input_embeddings(backup_embeds)
|
|
|
|
if self.layer == "last":
|
|
z = outputs.last_hidden_state
|
|
elif self.layer == "pooled":
|
|
z = outputs.pooler_output[:, None, :]
|
|
else:
|
|
z = outputs.hidden_states[self.layer_idx]
|
|
if self.layer_norm_hidden_state:
|
|
z = self.transformer.text_model.final_layer_norm(z)
|
|
|
|
pooled_output = outputs.pooler_output
|
|
if self.text_projection is not None:
|
|
pooled_output = pooled_output.float().to(self.text_projection.device) @ self.text_projection.float()
|
|
return z.float(), pooled_output.float()
|
|
|
|
def encode(self, tokens):
|
|
return self(tokens)
|
|
|
|
def load_sd(self, sd):
|
|
if "text_projection" in sd:
|
|
self.text_projection[:] = sd.pop("text_projection")
|
|
if "text_projection.weight" in sd:
|
|
self.text_projection[:] = sd.pop("text_projection.weight").transpose(0, 1)
|
|
return self.transformer.load_state_dict(sd, strict=False)
|
|
|
|
def parse_parentheses(string):
|
|
result = []
|
|
current_item = ""
|
|
nesting_level = 0
|
|
for char in string:
|
|
if char == "(":
|
|
if nesting_level == 0:
|
|
if current_item:
|
|
result.append(current_item)
|
|
current_item = "("
|
|
else:
|
|
current_item = "("
|
|
else:
|
|
current_item += char
|
|
nesting_level += 1
|
|
elif char == ")":
|
|
nesting_level -= 1
|
|
if nesting_level == 0:
|
|
result.append(current_item + ")")
|
|
current_item = ""
|
|
else:
|
|
current_item += char
|
|
else:
|
|
current_item += char
|
|
if current_item:
|
|
result.append(current_item)
|
|
return result
|
|
|
|
def token_weights(string, current_weight):
|
|
a = parse_parentheses(string)
|
|
out = []
|
|
for x in a:
|
|
weight = current_weight
|
|
if len(x) >= 2 and x[-1] == ')' and x[0] == '(':
|
|
x = x[1:-1]
|
|
xx = x.rfind(":")
|
|
weight *= 1.1
|
|
if xx > 0:
|
|
try:
|
|
weight = float(x[xx+1:])
|
|
x = x[:xx]
|
|
except:
|
|
pass
|
|
out += token_weights(x, weight)
|
|
else:
|
|
out += [(x, current_weight)]
|
|
return out
|
|
|
|
def escape_important(text):
|
|
text = text.replace("\\)", "\0\1")
|
|
text = text.replace("\\(", "\0\2")
|
|
return text
|
|
|
|
def unescape_important(text):
|
|
text = text.replace("\0\1", ")")
|
|
text = text.replace("\0\2", "(")
|
|
return text
|
|
|
|
def safe_load_embed_zip(embed_path):
|
|
with zipfile.ZipFile(embed_path) as myzip:
|
|
names = list(filter(lambda a: "data/" in a, myzip.namelist()))
|
|
names.reverse()
|
|
for n in names:
|
|
with myzip.open(n) as myfile:
|
|
data = myfile.read()
|
|
number = len(data) // 4
|
|
length_embed = 1024 #sd2.x
|
|
if number < 768:
|
|
continue
|
|
if number % 768 == 0:
|
|
length_embed = 768 #sd1.x
|
|
num_embeds = number // length_embed
|
|
embed = torch.frombuffer(data, dtype=torch.float)
|
|
out = embed.reshape((num_embeds, length_embed)).clone()
|
|
del embed
|
|
return out
|
|
|
|
def expand_directory_list(directories):
|
|
dirs = set()
|
|
for x in directories:
|
|
dirs.add(x)
|
|
for root, subdir, file in os.walk(x, followlinks=True):
|
|
dirs.add(root)
|
|
return list(dirs)
|
|
|
|
def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=None):
|
|
if isinstance(embedding_directory, str):
|
|
embedding_directory = [embedding_directory]
|
|
|
|
embedding_directory = expand_directory_list(embedding_directory)
|
|
|
|
valid_file = None
|
|
for embed_dir in embedding_directory:
|
|
embed_path = os.path.join(embed_dir, embedding_name)
|
|
if not os.path.isfile(embed_path):
|
|
extensions = ['.safetensors', '.pt', '.bin']
|
|
for x in extensions:
|
|
t = embed_path + x
|
|
if os.path.isfile(t):
|
|
valid_file = t
|
|
break
|
|
else:
|
|
valid_file = embed_path
|
|
if valid_file is not None:
|
|
break
|
|
|
|
if valid_file is None:
|
|
return None
|
|
|
|
embed_path = valid_file
|
|
|
|
embed_out = None
|
|
|
|
try:
|
|
if embed_path.lower().endswith(".safetensors"):
|
|
import safetensors.torch
|
|
embed = safetensors.torch.load_file(embed_path, device="cpu")
|
|
else:
|
|
if 'weights_only' in torch.load.__code__.co_varnames:
|
|
try:
|
|
embed = torch.load(embed_path, weights_only=True, map_location="cpu")
|
|
except:
|
|
embed_out = safe_load_embed_zip(embed_path)
|
|
else:
|
|
embed = torch.load(embed_path, map_location="cpu")
|
|
except Exception as e:
|
|
print(traceback.format_exc())
|
|
print()
|
|
print("error loading embedding, skipping loading:", embedding_name)
|
|
return None
|
|
|
|
if embed_out is None:
|
|
if 'string_to_param' in embed:
|
|
values = embed['string_to_param'].values()
|
|
embed_out = next(iter(values))
|
|
elif isinstance(embed, list):
|
|
out_list = []
|
|
for x in range(len(embed)):
|
|
for k in embed[x]:
|
|
t = embed[x][k]
|
|
if t.shape[-1] != embedding_size:
|
|
continue
|
|
out_list.append(t.reshape(-1, t.shape[-1]))
|
|
embed_out = torch.cat(out_list, dim=0)
|
|
elif embed_key is not None and embed_key in embed:
|
|
embed_out = embed[embed_key]
|
|
else:
|
|
values = embed.values()
|
|
embed_out = next(iter(values))
|
|
return embed_out
|
|
|
|
class SD1Tokenizer:
|
|
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l'):
|
|
if tokenizer_path is None:
|
|
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
|
|
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path)
|
|
self.max_length = max_length
|
|
self.max_tokens_per_section = self.max_length - 2
|
|
|
|
empty = self.tokenizer('')["input_ids"]
|
|
self.start_token = empty[0]
|
|
self.end_token = empty[1]
|
|
self.pad_with_end = pad_with_end
|
|
vocab = self.tokenizer.get_vocab()
|
|
self.inv_vocab = {v: k for k, v in vocab.items()}
|
|
self.embedding_directory = embedding_directory
|
|
self.max_word_length = 8
|
|
self.embedding_identifier = "embedding:"
|
|
self.embedding_size = embedding_size
|
|
self.embedding_key = embedding_key
|
|
|
|
def _try_get_embedding(self, embedding_name:str):
|
|
'''
|
|
Takes a potential embedding name and tries to retrieve it.
|
|
Returns a Tuple consisting of the embedding and any leftover string, embedding can be None.
|
|
'''
|
|
embed = load_embed(embedding_name, self.embedding_directory, self.embedding_size, self.embedding_key)
|
|
if embed is None:
|
|
stripped = embedding_name.strip(',')
|
|
if len(stripped) < len(embedding_name):
|
|
embed = load_embed(stripped, self.embedding_directory, self.embedding_size, self.embedding_key)
|
|
return (embed, embedding_name[len(stripped):])
|
|
return (embed, "")
|
|
|
|
|
|
def tokenize_with_weights(self, text:str, return_word_ids=False):
|
|
'''
|
|
Takes a prompt and converts it to a list of (token, weight, word id) elements.
|
|
Tokens can both be integer tokens and pre computed CLIP tensors.
|
|
Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens.
|
|
Returned list has the dimensions NxM where M is the input size of CLIP
|
|
'''
|
|
if self.pad_with_end:
|
|
pad_token = self.end_token
|
|
else:
|
|
pad_token = 0
|
|
|
|
text = escape_important(text)
|
|
parsed_weights = token_weights(text, 1.0)
|
|
|
|
#tokenize words
|
|
tokens = []
|
|
for weighted_segment, weight in parsed_weights:
|
|
to_tokenize = unescape_important(weighted_segment).replace("\n", " ").split(' ')
|
|
to_tokenize = [x for x in to_tokenize if x != ""]
|
|
for word in to_tokenize:
|
|
#if we find an embedding, deal with the embedding
|
|
if word.startswith(self.embedding_identifier) and self.embedding_directory is not None:
|
|
embedding_name = word[len(self.embedding_identifier):].strip('\n')
|
|
embed, leftover = self._try_get_embedding(embedding_name)
|
|
if embed is None:
|
|
print(f"warning, embedding:{embedding_name} does not exist, ignoring")
|
|
else:
|
|
if len(embed.shape) == 1:
|
|
tokens.append([(embed, weight)])
|
|
else:
|
|
tokens.append([(embed[x], weight) for x in range(embed.shape[0])])
|
|
#if we accidentally have leftover text, continue parsing using leftover, else move on to next word
|
|
if leftover != "":
|
|
word = leftover
|
|
else:
|
|
continue
|
|
#parse word
|
|
tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][1:-1]])
|
|
|
|
#reshape token array to CLIP input size
|
|
batched_tokens = []
|
|
batch = [(self.start_token, 1.0, 0)]
|
|
batched_tokens.append(batch)
|
|
for i, t_group in enumerate(tokens):
|
|
#determine if we're going to try and keep the tokens in a single batch
|
|
is_large = len(t_group) >= self.max_word_length
|
|
|
|
while len(t_group) > 0:
|
|
if len(t_group) + len(batch) > self.max_length - 1:
|
|
remaining_length = self.max_length - len(batch) - 1
|
|
#break word in two and add end token
|
|
if is_large:
|
|
batch.extend([(t,w,i+1) for t,w in t_group[:remaining_length]])
|
|
batch.append((self.end_token, 1.0, 0))
|
|
t_group = t_group[remaining_length:]
|
|
#add end token and pad
|
|
else:
|
|
batch.append((self.end_token, 1.0, 0))
|
|
batch.extend([(pad_token, 1.0, 0)] * (remaining_length))
|
|
#start new batch
|
|
batch = [(self.start_token, 1.0, 0)]
|
|
batched_tokens.append(batch)
|
|
else:
|
|
batch.extend([(t,w,i+1) for t,w in t_group])
|
|
t_group = []
|
|
|
|
#fill last batch
|
|
batch.extend([(self.end_token, 1.0, 0)] + [(pad_token, 1.0, 0)] * (self.max_length - len(batch) - 1))
|
|
|
|
if not return_word_ids:
|
|
batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens]
|
|
|
|
return batched_tokens
|
|
|
|
|
|
def untokenize(self, token_weight_pair):
|
|
return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair))
|