ComfyUI/comfy/supported_models_base.py
comfyanonymous 9b93b920be Add CheckpointSave node to save checkpoints.
The created checkpoints contain workflow metadata that can be loaded by
dragging them on top of the UI or loading them with the "Load" button.

Checkpoints will be saved in fp16 or fp32 depending on the format ComfyUI
is using for inference on your hardware. To force fp32 use: --force-fp32

Anything that patches the model weights like merging or loras will be
saved.

The output directory is currently set to: output/checkpoints but that might
change in the future.
2023-06-26 12:22:27 -04:00

79 lines
2.5 KiB
Python

import torch
from . import model_base
from . import utils
def state_dict_key_replace(state_dict, keys_to_replace):
for x in keys_to_replace:
if x in state_dict:
state_dict[keys_to_replace[x]] = state_dict.pop(x)
return state_dict
def state_dict_prefix_replace(state_dict, replace_prefix):
for rp in replace_prefix:
replace = list(map(lambda a: (a, "{}{}".format(replace_prefix[rp], a[len(rp):])), filter(lambda a: a.startswith(rp), state_dict.keys())))
for x in replace:
state_dict[x[1]] = state_dict.pop(x[0])
return state_dict
class ClipTarget:
def __init__(self, tokenizer, clip):
self.clip = clip
self.tokenizer = tokenizer
self.params = {}
class BASE:
unet_config = {}
unet_extra_config = {
"num_heads": -1,
"num_head_channels": 64,
}
clip_prefix = []
clip_vision_prefix = None
noise_aug_config = None
@classmethod
def matches(s, unet_config):
for k in s.unet_config:
if s.unet_config[k] != unet_config[k]:
return False
return True
def v_prediction(self, state_dict):
return False
def inpaint_model(self):
return self.unet_config["in_channels"] > 4
def __init__(self, unet_config):
self.unet_config = unet_config
self.latent_format = self.latent_format()
for x in self.unet_extra_config:
self.unet_config[x] = self.unet_extra_config[x]
def get_model(self, state_dict):
if self.inpaint_model():
return model_base.SDInpaint(self, v_prediction=self.v_prediction(state_dict))
elif self.noise_aug_config is not None:
return model_base.SD21UNCLIP(self, self.noise_aug_config, v_prediction=self.v_prediction(state_dict))
else:
return model_base.BaseModel(self, v_prediction=self.v_prediction(state_dict))
def process_clip_state_dict(self, state_dict):
return state_dict
def process_clip_state_dict_for_saving(self, state_dict):
replace_prefix = {"": "cond_stage_model."}
return state_dict_prefix_replace(state_dict, replace_prefix)
def process_unet_state_dict_for_saving(self, state_dict):
replace_prefix = {"": "model.diffusion_model."}
return state_dict_prefix_replace(state_dict, replace_prefix)
def process_vae_state_dict_for_saving(self, state_dict):
replace_prefix = {"": "first_stage_model."}
return state_dict_prefix_replace(state_dict, replace_prefix)