mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
1777b54d02
apply_model in model_base now returns the denoised output. This means that sampling_function now computes things on the denoised output instead of the model output. This should make things more consistent across current and future models.
895 lines
38 KiB
Python
895 lines
38 KiB
Python
#code taken from: https://github.com/wl-zhao/UniPC and modified
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import math
|
|
|
|
from tqdm.auto import trange, tqdm
|
|
|
|
|
|
class NoiseScheduleVP:
|
|
def __init__(
|
|
self,
|
|
schedule='discrete',
|
|
betas=None,
|
|
alphas_cumprod=None,
|
|
continuous_beta_0=0.1,
|
|
continuous_beta_1=20.,
|
|
):
|
|
"""Create a wrapper class for the forward SDE (VP type).
|
|
|
|
***
|
|
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
|
|
We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
|
|
***
|
|
|
|
The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
|
|
We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
|
|
Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
|
|
|
|
log_alpha_t = self.marginal_log_mean_coeff(t)
|
|
sigma_t = self.marginal_std(t)
|
|
lambda_t = self.marginal_lambda(t)
|
|
|
|
Moreover, as lambda(t) is an invertible function, we also support its inverse function:
|
|
|
|
t = self.inverse_lambda(lambda_t)
|
|
|
|
===============================================================
|
|
|
|
We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
|
|
|
|
1. For discrete-time DPMs:
|
|
|
|
For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
|
|
t_i = (i + 1) / N
|
|
e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
|
|
We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
|
|
|
|
Args:
|
|
betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
|
|
alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
|
|
|
|
Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
|
|
|
|
**Important**: Please pay special attention for the args for `alphas_cumprod`:
|
|
The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
|
|
q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
|
|
Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
|
|
alpha_{t_n} = \sqrt{\hat{alpha_n}},
|
|
and
|
|
log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
|
|
|
|
|
|
2. For continuous-time DPMs:
|
|
|
|
We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
|
|
schedule are the default settings in DDPM and improved-DDPM:
|
|
|
|
Args:
|
|
beta_min: A `float` number. The smallest beta for the linear schedule.
|
|
beta_max: A `float` number. The largest beta for the linear schedule.
|
|
cosine_s: A `float` number. The hyperparameter in the cosine schedule.
|
|
cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
|
|
T: A `float` number. The ending time of the forward process.
|
|
|
|
===============================================================
|
|
|
|
Args:
|
|
schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
|
|
'linear' or 'cosine' for continuous-time DPMs.
|
|
Returns:
|
|
A wrapper object of the forward SDE (VP type).
|
|
|
|
===============================================================
|
|
|
|
Example:
|
|
|
|
# For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
|
|
>>> ns = NoiseScheduleVP('discrete', betas=betas)
|
|
|
|
# For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
|
|
>>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
|
|
|
|
# For continuous-time DPMs (VPSDE), linear schedule:
|
|
>>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
|
|
|
|
"""
|
|
|
|
if schedule not in ['discrete', 'linear', 'cosine']:
|
|
raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule))
|
|
|
|
self.schedule = schedule
|
|
if schedule == 'discrete':
|
|
if betas is not None:
|
|
log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
|
|
else:
|
|
assert alphas_cumprod is not None
|
|
log_alphas = 0.5 * torch.log(alphas_cumprod)
|
|
self.total_N = len(log_alphas)
|
|
self.T = 1.
|
|
self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
|
|
self.log_alpha_array = log_alphas.reshape((1, -1,))
|
|
else:
|
|
self.total_N = 1000
|
|
self.beta_0 = continuous_beta_0
|
|
self.beta_1 = continuous_beta_1
|
|
self.cosine_s = 0.008
|
|
self.cosine_beta_max = 999.
|
|
self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
|
|
self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
|
|
self.schedule = schedule
|
|
if schedule == 'cosine':
|
|
# For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
|
|
# Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
|
|
self.T = 0.9946
|
|
else:
|
|
self.T = 1.
|
|
|
|
def marginal_log_mean_coeff(self, t):
|
|
"""
|
|
Compute log(alpha_t) of a given continuous-time label t in [0, T].
|
|
"""
|
|
if self.schedule == 'discrete':
|
|
return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1))
|
|
elif self.schedule == 'linear':
|
|
return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
|
|
elif self.schedule == 'cosine':
|
|
log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
|
|
log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
|
|
return log_alpha_t
|
|
|
|
def marginal_alpha(self, t):
|
|
"""
|
|
Compute alpha_t of a given continuous-time label t in [0, T].
|
|
"""
|
|
return torch.exp(self.marginal_log_mean_coeff(t))
|
|
|
|
def marginal_std(self, t):
|
|
"""
|
|
Compute sigma_t of a given continuous-time label t in [0, T].
|
|
"""
|
|
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
|
|
|
|
def marginal_lambda(self, t):
|
|
"""
|
|
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
|
|
"""
|
|
log_mean_coeff = self.marginal_log_mean_coeff(t)
|
|
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
|
|
return log_mean_coeff - log_std
|
|
|
|
def inverse_lambda(self, lamb):
|
|
"""
|
|
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
|
|
"""
|
|
if self.schedule == 'linear':
|
|
tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
|
Delta = self.beta_0**2 + tmp
|
|
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
|
|
elif self.schedule == 'discrete':
|
|
log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
|
|
t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]))
|
|
return t.reshape((-1,))
|
|
else:
|
|
log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
|
t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
|
|
t = t_fn(log_alpha)
|
|
return t
|
|
|
|
|
|
def model_wrapper(
|
|
model,
|
|
noise_schedule,
|
|
model_type="noise",
|
|
model_kwargs={},
|
|
guidance_type="uncond",
|
|
condition=None,
|
|
unconditional_condition=None,
|
|
guidance_scale=1.,
|
|
classifier_fn=None,
|
|
classifier_kwargs={},
|
|
):
|
|
"""Create a wrapper function for the noise prediction model.
|
|
|
|
DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
|
|
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
|
|
|
|
We support four types of the diffusion model by setting `model_type`:
|
|
|
|
1. "noise": noise prediction model. (Trained by predicting noise).
|
|
|
|
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
|
|
|
|
3. "v": velocity prediction model. (Trained by predicting the velocity).
|
|
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
|
|
|
|
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
|
|
arXiv preprint arXiv:2202.00512 (2022).
|
|
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
|
|
arXiv preprint arXiv:2210.02303 (2022).
|
|
|
|
4. "score": marginal score function. (Trained by denoising score matching).
|
|
Note that the score function and the noise prediction model follows a simple relationship:
|
|
```
|
|
noise(x_t, t) = -sigma_t * score(x_t, t)
|
|
```
|
|
|
|
We support three types of guided sampling by DPMs by setting `guidance_type`:
|
|
1. "uncond": unconditional sampling by DPMs.
|
|
The input `model` has the following format:
|
|
``
|
|
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
|
``
|
|
|
|
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
|
|
The input `model` has the following format:
|
|
``
|
|
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
|
``
|
|
|
|
The input `classifier_fn` has the following format:
|
|
``
|
|
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
|
|
``
|
|
|
|
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
|
|
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
|
|
|
|
3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
|
|
The input `model` has the following format:
|
|
``
|
|
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
|
|
``
|
|
And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
|
|
|
|
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
|
|
arXiv preprint arXiv:2207.12598 (2022).
|
|
|
|
|
|
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
|
|
or continuous-time labels (i.e. epsilon to T).
|
|
|
|
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
|
|
``
|
|
def model_fn(x, t_continuous) -> noise:
|
|
t_input = get_model_input_time(t_continuous)
|
|
return noise_pred(model, x, t_input, **model_kwargs)
|
|
``
|
|
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
|
|
|
|
===============================================================
|
|
|
|
Args:
|
|
model: A diffusion model with the corresponding format described above.
|
|
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
|
model_type: A `str`. The parameterization type of the diffusion model.
|
|
"noise" or "x_start" or "v" or "score".
|
|
model_kwargs: A `dict`. A dict for the other inputs of the model function.
|
|
guidance_type: A `str`. The type of the guidance for sampling.
|
|
"uncond" or "classifier" or "classifier-free".
|
|
condition: A pytorch tensor. The condition for the guided sampling.
|
|
Only used for "classifier" or "classifier-free" guidance type.
|
|
unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
|
|
Only used for "classifier-free" guidance type.
|
|
guidance_scale: A `float`. The scale for the guided sampling.
|
|
classifier_fn: A classifier function. Only used for the classifier guidance.
|
|
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
|
|
Returns:
|
|
A noise prediction model that accepts the noised data and the continuous time as the inputs.
|
|
"""
|
|
|
|
def get_model_input_time(t_continuous):
|
|
"""
|
|
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
|
|
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
|
|
For continuous-time DPMs, we just use `t_continuous`.
|
|
"""
|
|
if noise_schedule.schedule == 'discrete':
|
|
return (t_continuous - 1. / noise_schedule.total_N) * 1000.
|
|
else:
|
|
return t_continuous
|
|
|
|
def noise_pred_fn(x, t_continuous, cond=None):
|
|
if t_continuous.reshape((-1,)).shape[0] == 1:
|
|
t_continuous = t_continuous.expand((x.shape[0]))
|
|
t_input = get_model_input_time(t_continuous)
|
|
output = model(x, t_input, **model_kwargs)
|
|
if model_type == "noise":
|
|
return output
|
|
elif model_type == "x_start":
|
|
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
|
dims = x.dim()
|
|
return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
|
|
elif model_type == "v":
|
|
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
|
dims = x.dim()
|
|
return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
|
|
elif model_type == "score":
|
|
sigma_t = noise_schedule.marginal_std(t_continuous)
|
|
dims = x.dim()
|
|
return -expand_dims(sigma_t, dims) * output
|
|
|
|
def cond_grad_fn(x, t_input):
|
|
"""
|
|
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
|
|
"""
|
|
with torch.enable_grad():
|
|
x_in = x.detach().requires_grad_(True)
|
|
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
|
|
return torch.autograd.grad(log_prob.sum(), x_in)[0]
|
|
|
|
def model_fn(x, t_continuous):
|
|
"""
|
|
The noise predicition model function that is used for DPM-Solver.
|
|
"""
|
|
if t_continuous.reshape((-1,)).shape[0] == 1:
|
|
t_continuous = t_continuous.expand((x.shape[0]))
|
|
if guidance_type == "uncond":
|
|
return noise_pred_fn(x, t_continuous)
|
|
elif guidance_type == "classifier":
|
|
assert classifier_fn is not None
|
|
t_input = get_model_input_time(t_continuous)
|
|
cond_grad = cond_grad_fn(x, t_input)
|
|
sigma_t = noise_schedule.marginal_std(t_continuous)
|
|
noise = noise_pred_fn(x, t_continuous)
|
|
return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
|
|
elif guidance_type == "classifier-free":
|
|
if guidance_scale == 1. or unconditional_condition is None:
|
|
return noise_pred_fn(x, t_continuous, cond=condition)
|
|
else:
|
|
x_in = torch.cat([x] * 2)
|
|
t_in = torch.cat([t_continuous] * 2)
|
|
c_in = torch.cat([unconditional_condition, condition])
|
|
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
|
|
return noise_uncond + guidance_scale * (noise - noise_uncond)
|
|
|
|
assert model_type in ["noise", "x_start", "v"]
|
|
assert guidance_type in ["uncond", "classifier", "classifier-free"]
|
|
return model_fn
|
|
|
|
|
|
class UniPC:
|
|
def __init__(
|
|
self,
|
|
model_fn,
|
|
noise_schedule,
|
|
predict_x0=True,
|
|
thresholding=False,
|
|
max_val=1.,
|
|
variant='bh1',
|
|
noise_mask=None,
|
|
masked_image=None,
|
|
noise=None,
|
|
):
|
|
"""Construct a UniPC.
|
|
|
|
We support both data_prediction and noise_prediction.
|
|
"""
|
|
self.model = model_fn
|
|
self.noise_schedule = noise_schedule
|
|
self.variant = variant
|
|
self.predict_x0 = predict_x0
|
|
self.thresholding = thresholding
|
|
self.max_val = max_val
|
|
self.noise_mask = noise_mask
|
|
self.masked_image = masked_image
|
|
self.noise = noise
|
|
|
|
def dynamic_thresholding_fn(self, x0, t=None):
|
|
"""
|
|
The dynamic thresholding method.
|
|
"""
|
|
dims = x0.dim()
|
|
p = self.dynamic_thresholding_ratio
|
|
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
|
|
s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims)
|
|
x0 = torch.clamp(x0, -s, s) / s
|
|
return x0
|
|
|
|
def noise_prediction_fn(self, x, t):
|
|
"""
|
|
Return the noise prediction model.
|
|
"""
|
|
if self.noise_mask is not None:
|
|
return self.model(x, t) * self.noise_mask
|
|
else:
|
|
return self.model(x, t)
|
|
|
|
def data_prediction_fn(self, x, t):
|
|
"""
|
|
Return the data prediction model (with thresholding).
|
|
"""
|
|
noise = self.noise_prediction_fn(x, t)
|
|
dims = x.dim()
|
|
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
|
|
x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
|
|
if self.thresholding:
|
|
p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
|
|
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
|
|
s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
|
|
x0 = torch.clamp(x0, -s, s) / s
|
|
if self.noise_mask is not None:
|
|
x0 = x0 * self.noise_mask + (1. - self.noise_mask) * self.masked_image
|
|
return x0
|
|
|
|
def model_fn(self, x, t):
|
|
"""
|
|
Convert the model to the noise prediction model or the data prediction model.
|
|
"""
|
|
if self.predict_x0:
|
|
return self.data_prediction_fn(x, t)
|
|
else:
|
|
return self.noise_prediction_fn(x, t)
|
|
|
|
def get_time_steps(self, skip_type, t_T, t_0, N, device):
|
|
"""Compute the intermediate time steps for sampling.
|
|
"""
|
|
if skip_type == 'logSNR':
|
|
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
|
|
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
|
|
logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
|
|
return self.noise_schedule.inverse_lambda(logSNR_steps)
|
|
elif skip_type == 'time_uniform':
|
|
return torch.linspace(t_T, t_0, N + 1).to(device)
|
|
elif skip_type == 'time_quadratic':
|
|
t_order = 2
|
|
t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device)
|
|
return t
|
|
else:
|
|
raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
|
|
|
|
def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
|
|
"""
|
|
Get the order of each step for sampling by the singlestep DPM-Solver.
|
|
"""
|
|
if order == 3:
|
|
K = steps // 3 + 1
|
|
if steps % 3 == 0:
|
|
orders = [3,] * (K - 2) + [2, 1]
|
|
elif steps % 3 == 1:
|
|
orders = [3,] * (K - 1) + [1]
|
|
else:
|
|
orders = [3,] * (K - 1) + [2]
|
|
elif order == 2:
|
|
if steps % 2 == 0:
|
|
K = steps // 2
|
|
orders = [2,] * K
|
|
else:
|
|
K = steps // 2 + 1
|
|
orders = [2,] * (K - 1) + [1]
|
|
elif order == 1:
|
|
K = steps
|
|
orders = [1,] * steps
|
|
else:
|
|
raise ValueError("'order' must be '1' or '2' or '3'.")
|
|
if skip_type == 'logSNR':
|
|
# To reproduce the results in DPM-Solver paper
|
|
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
|
|
else:
|
|
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders), 0).to(device)]
|
|
return timesteps_outer, orders
|
|
|
|
def denoise_to_zero_fn(self, x, s):
|
|
"""
|
|
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
|
|
"""
|
|
return self.data_prediction_fn(x, s)
|
|
|
|
def multistep_uni_pc_update(self, x, model_prev_list, t_prev_list, t, order, **kwargs):
|
|
if len(t.shape) == 0:
|
|
t = t.view(-1)
|
|
if 'bh' in self.variant:
|
|
return self.multistep_uni_pc_bh_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
|
|
else:
|
|
assert self.variant == 'vary_coeff'
|
|
return self.multistep_uni_pc_vary_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
|
|
|
|
def multistep_uni_pc_vary_update(self, x, model_prev_list, t_prev_list, t, order, use_corrector=True):
|
|
print(f'using unified predictor-corrector with order {order} (solver type: vary coeff)')
|
|
ns = self.noise_schedule
|
|
assert order <= len(model_prev_list)
|
|
|
|
# first compute rks
|
|
t_prev_0 = t_prev_list[-1]
|
|
lambda_prev_0 = ns.marginal_lambda(t_prev_0)
|
|
lambda_t = ns.marginal_lambda(t)
|
|
model_prev_0 = model_prev_list[-1]
|
|
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
|
log_alpha_t = ns.marginal_log_mean_coeff(t)
|
|
alpha_t = torch.exp(log_alpha_t)
|
|
|
|
h = lambda_t - lambda_prev_0
|
|
|
|
rks = []
|
|
D1s = []
|
|
for i in range(1, order):
|
|
t_prev_i = t_prev_list[-(i + 1)]
|
|
model_prev_i = model_prev_list[-(i + 1)]
|
|
lambda_prev_i = ns.marginal_lambda(t_prev_i)
|
|
rk = (lambda_prev_i - lambda_prev_0) / h
|
|
rks.append(rk)
|
|
D1s.append((model_prev_i - model_prev_0) / rk)
|
|
|
|
rks.append(1.)
|
|
rks = torch.tensor(rks, device=x.device)
|
|
|
|
K = len(rks)
|
|
# build C matrix
|
|
C = []
|
|
|
|
col = torch.ones_like(rks)
|
|
for k in range(1, K + 1):
|
|
C.append(col)
|
|
col = col * rks / (k + 1)
|
|
C = torch.stack(C, dim=1)
|
|
|
|
if len(D1s) > 0:
|
|
D1s = torch.stack(D1s, dim=1) # (B, K)
|
|
C_inv_p = torch.linalg.inv(C[:-1, :-1])
|
|
A_p = C_inv_p
|
|
|
|
if use_corrector:
|
|
print('using corrector')
|
|
C_inv = torch.linalg.inv(C)
|
|
A_c = C_inv
|
|
|
|
hh = -h if self.predict_x0 else h
|
|
h_phi_1 = torch.expm1(hh)
|
|
h_phi_ks = []
|
|
factorial_k = 1
|
|
h_phi_k = h_phi_1
|
|
for k in range(1, K + 2):
|
|
h_phi_ks.append(h_phi_k)
|
|
h_phi_k = h_phi_k / hh - 1 / factorial_k
|
|
factorial_k *= (k + 1)
|
|
|
|
model_t = None
|
|
if self.predict_x0:
|
|
x_t_ = (
|
|
sigma_t / sigma_prev_0 * x
|
|
- alpha_t * h_phi_1 * model_prev_0
|
|
)
|
|
# now predictor
|
|
x_t = x_t_
|
|
if len(D1s) > 0:
|
|
# compute the residuals for predictor
|
|
for k in range(K - 1):
|
|
x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
|
|
# now corrector
|
|
if use_corrector:
|
|
model_t = self.model_fn(x_t, t)
|
|
D1_t = (model_t - model_prev_0)
|
|
x_t = x_t_
|
|
k = 0
|
|
for k in range(K - 1):
|
|
x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
|
|
x_t = x_t - alpha_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
|
|
else:
|
|
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
|
x_t_ = (
|
|
(torch.exp(log_alpha_t - log_alpha_prev_0)) * x
|
|
- (sigma_t * h_phi_1) * model_prev_0
|
|
)
|
|
# now predictor
|
|
x_t = x_t_
|
|
if len(D1s) > 0:
|
|
# compute the residuals for predictor
|
|
for k in range(K - 1):
|
|
x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
|
|
# now corrector
|
|
if use_corrector:
|
|
model_t = self.model_fn(x_t, t)
|
|
D1_t = (model_t - model_prev_0)
|
|
x_t = x_t_
|
|
k = 0
|
|
for k in range(K - 1):
|
|
x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
|
|
x_t = x_t - sigma_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
|
|
return x_t, model_t
|
|
|
|
def multistep_uni_pc_bh_update(self, x, model_prev_list, t_prev_list, t, order, x_t=None, use_corrector=True):
|
|
# print(f'using unified predictor-corrector with order {order} (solver type: B(h))')
|
|
ns = self.noise_schedule
|
|
assert order <= len(model_prev_list)
|
|
dims = x.dim()
|
|
|
|
# first compute rks
|
|
t_prev_0 = t_prev_list[-1]
|
|
lambda_prev_0 = ns.marginal_lambda(t_prev_0)
|
|
lambda_t = ns.marginal_lambda(t)
|
|
model_prev_0 = model_prev_list[-1]
|
|
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
|
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
|
alpha_t = torch.exp(log_alpha_t)
|
|
|
|
h = lambda_t - lambda_prev_0
|
|
|
|
rks = []
|
|
D1s = []
|
|
for i in range(1, order):
|
|
t_prev_i = t_prev_list[-(i + 1)]
|
|
model_prev_i = model_prev_list[-(i + 1)]
|
|
lambda_prev_i = ns.marginal_lambda(t_prev_i)
|
|
rk = ((lambda_prev_i - lambda_prev_0) / h)[0]
|
|
rks.append(rk)
|
|
D1s.append((model_prev_i - model_prev_0) / rk)
|
|
|
|
rks.append(1.)
|
|
rks = torch.tensor(rks, device=x.device)
|
|
|
|
R = []
|
|
b = []
|
|
|
|
hh = -h[0] if self.predict_x0 else h[0]
|
|
h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
|
|
h_phi_k = h_phi_1 / hh - 1
|
|
|
|
factorial_i = 1
|
|
|
|
if self.variant == 'bh1':
|
|
B_h = hh
|
|
elif self.variant == 'bh2':
|
|
B_h = torch.expm1(hh)
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
for i in range(1, order + 1):
|
|
R.append(torch.pow(rks, i - 1))
|
|
b.append(h_phi_k * factorial_i / B_h)
|
|
factorial_i *= (i + 1)
|
|
h_phi_k = h_phi_k / hh - 1 / factorial_i
|
|
|
|
R = torch.stack(R)
|
|
b = torch.tensor(b, device=x.device)
|
|
|
|
# now predictor
|
|
use_predictor = len(D1s) > 0 and x_t is None
|
|
if len(D1s) > 0:
|
|
D1s = torch.stack(D1s, dim=1) # (B, K)
|
|
if x_t is None:
|
|
# for order 2, we use a simplified version
|
|
if order == 2:
|
|
rhos_p = torch.tensor([0.5], device=b.device)
|
|
else:
|
|
rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
|
|
else:
|
|
D1s = None
|
|
|
|
if use_corrector:
|
|
# print('using corrector')
|
|
# for order 1, we use a simplified version
|
|
if order == 1:
|
|
rhos_c = torch.tensor([0.5], device=b.device)
|
|
else:
|
|
rhos_c = torch.linalg.solve(R, b)
|
|
|
|
model_t = None
|
|
if self.predict_x0:
|
|
x_t_ = (
|
|
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
|
- expand_dims(alpha_t * h_phi_1, dims)* model_prev_0
|
|
)
|
|
|
|
if x_t is None:
|
|
if use_predictor:
|
|
pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
|
|
else:
|
|
pred_res = 0
|
|
x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * pred_res
|
|
|
|
if use_corrector:
|
|
model_t = self.model_fn(x_t, t)
|
|
if D1s is not None:
|
|
corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
|
|
else:
|
|
corr_res = 0
|
|
D1_t = (model_t - model_prev_0)
|
|
x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
|
|
else:
|
|
x_t_ = (
|
|
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
|
- expand_dims(sigma_t * h_phi_1, dims) * model_prev_0
|
|
)
|
|
if x_t is None:
|
|
if use_predictor:
|
|
pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
|
|
else:
|
|
pred_res = 0
|
|
x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * pred_res
|
|
|
|
if use_corrector:
|
|
model_t = self.model_fn(x_t, t)
|
|
if D1s is not None:
|
|
corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
|
|
else:
|
|
corr_res = 0
|
|
D1_t = (model_t - model_prev_0)
|
|
x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
|
|
return x_t, model_t
|
|
|
|
|
|
def sample(self, x, timesteps, t_start=None, t_end=None, order=3, skip_type='time_uniform',
|
|
method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
|
|
atol=0.0078, rtol=0.05, corrector=False, callback=None, disable_pbar=False
|
|
):
|
|
# t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
|
|
# t_T = self.noise_schedule.T if t_start is None else t_start
|
|
device = x.device
|
|
steps = len(timesteps) - 1
|
|
if method == 'multistep':
|
|
assert steps >= order
|
|
# timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
|
|
assert timesteps.shape[0] - 1 == steps
|
|
# with torch.no_grad():
|
|
for step_index in trange(steps, disable=disable_pbar):
|
|
if self.noise_mask is not None:
|
|
x = x * self.noise_mask + (1. - self.noise_mask) * (self.masked_image * self.noise_schedule.marginal_alpha(timesteps[step_index]) + self.noise * self.noise_schedule.marginal_std(timesteps[step_index]))
|
|
if step_index == 0:
|
|
vec_t = timesteps[0].expand((x.shape[0]))
|
|
model_prev_list = [self.model_fn(x, vec_t)]
|
|
t_prev_list = [vec_t]
|
|
elif step_index < order:
|
|
init_order = step_index
|
|
# Init the first `order` values by lower order multistep DPM-Solver.
|
|
# for init_order in range(1, order):
|
|
vec_t = timesteps[init_order].expand(x.shape[0])
|
|
x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, init_order, use_corrector=True)
|
|
if model_x is None:
|
|
model_x = self.model_fn(x, vec_t)
|
|
model_prev_list.append(model_x)
|
|
t_prev_list.append(vec_t)
|
|
else:
|
|
extra_final_step = 0
|
|
if step_index == (steps - 1):
|
|
extra_final_step = 1
|
|
for step in range(step_index, step_index + 1 + extra_final_step):
|
|
vec_t = timesteps[step].expand(x.shape[0])
|
|
if lower_order_final:
|
|
step_order = min(order, steps + 1 - step)
|
|
else:
|
|
step_order = order
|
|
# print('this step order:', step_order)
|
|
if step == steps:
|
|
# print('do not run corrector at the last step')
|
|
use_corrector = False
|
|
else:
|
|
use_corrector = True
|
|
x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, step_order, use_corrector=use_corrector)
|
|
for i in range(order - 1):
|
|
t_prev_list[i] = t_prev_list[i + 1]
|
|
model_prev_list[i] = model_prev_list[i + 1]
|
|
t_prev_list[-1] = vec_t
|
|
# We do not need to evaluate the final model value.
|
|
if step < steps:
|
|
if model_x is None:
|
|
model_x = self.model_fn(x, vec_t)
|
|
model_prev_list[-1] = model_x
|
|
if callback is not None:
|
|
callback(step_index, model_prev_list[-1], x, steps)
|
|
else:
|
|
raise NotImplementedError()
|
|
# if denoise_to_zero:
|
|
# x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
|
|
return x
|
|
|
|
|
|
#############################################################
|
|
# other utility functions
|
|
#############################################################
|
|
|
|
def interpolate_fn(x, xp, yp):
|
|
"""
|
|
A piecewise linear function y = f(x), using xp and yp as keypoints.
|
|
We implement f(x) in a differentiable way (i.e. applicable for autograd).
|
|
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
|
|
|
|
Args:
|
|
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
|
|
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
|
|
yp: PyTorch tensor with shape [C, K].
|
|
Returns:
|
|
The function values f(x), with shape [N, C].
|
|
"""
|
|
N, K = x.shape[0], xp.shape[1]
|
|
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
|
|
sorted_all_x, x_indices = torch.sort(all_x, dim=2)
|
|
x_idx = torch.argmin(x_indices, dim=2)
|
|
cand_start_idx = x_idx - 1
|
|
start_idx = torch.where(
|
|
torch.eq(x_idx, 0),
|
|
torch.tensor(1, device=x.device),
|
|
torch.where(
|
|
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
|
),
|
|
)
|
|
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
|
|
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
|
|
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
|
|
start_idx2 = torch.where(
|
|
torch.eq(x_idx, 0),
|
|
torch.tensor(0, device=x.device),
|
|
torch.where(
|
|
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
|
),
|
|
)
|
|
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
|
|
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
|
|
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
|
|
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
|
|
return cand
|
|
|
|
|
|
def expand_dims(v, dims):
|
|
"""
|
|
Expand the tensor `v` to the dim `dims`.
|
|
|
|
Args:
|
|
`v`: a PyTorch tensor with shape [N].
|
|
`dim`: a `int`.
|
|
Returns:
|
|
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
|
|
"""
|
|
return v[(...,) + (None,)*(dims - 1)]
|
|
|
|
|
|
class SigmaConvert:
|
|
schedule = ""
|
|
def marginal_log_mean_coeff(self, sigma):
|
|
return 0.5 * torch.log(1 / ((sigma * sigma) + 1))
|
|
|
|
def marginal_alpha(self, t):
|
|
return torch.exp(self.marginal_log_mean_coeff(t))
|
|
|
|
def marginal_std(self, t):
|
|
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
|
|
|
|
def marginal_lambda(self, t):
|
|
"""
|
|
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
|
|
"""
|
|
log_mean_coeff = self.marginal_log_mean_coeff(t)
|
|
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
|
|
return log_mean_coeff - log_std
|
|
|
|
def predict_eps_sigma(model, input, sigma_in, **kwargs):
|
|
sigma = sigma_in.view(sigma_in.shape[:1] + (1,) * (input.ndim - 1))
|
|
input = input * ((sigma ** 2 + 1.0) ** 0.5)
|
|
return (input - model(input, sigma_in, **kwargs)) / sigma
|
|
|
|
|
|
def sample_unipc(model, noise, image, sigmas, sampling_function, max_denoise, extra_args=None, callback=None, disable=False, noise_mask=None, variant='bh1'):
|
|
timesteps = sigmas.clone()
|
|
if sigmas[-1] == 0:
|
|
timesteps = sigmas[:]
|
|
timesteps[-1] = 0.001
|
|
else:
|
|
timesteps = sigmas.clone()
|
|
ns = SigmaConvert()
|
|
|
|
if image is not None:
|
|
img = image * ns.marginal_alpha(timesteps[0])
|
|
if max_denoise:
|
|
noise_mult = 1.0
|
|
else:
|
|
noise_mult = ns.marginal_std(timesteps[0])
|
|
img += noise * noise_mult
|
|
else:
|
|
img = noise
|
|
|
|
model_type = "noise"
|
|
|
|
model_fn = model_wrapper(
|
|
lambda input, sigma, **kwargs: predict_eps_sigma(model, input, sigma, **kwargs),
|
|
ns,
|
|
model_type=model_type,
|
|
guidance_type="uncond",
|
|
model_kwargs=extra_args,
|
|
)
|
|
|
|
order = min(3, len(timesteps) - 2)
|
|
uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, noise_mask=noise_mask, masked_image=image, noise=noise, variant=variant)
|
|
x = uni_pc.sample(img, timesteps=timesteps, skip_type="time_uniform", method="multistep", order=order, lower_order_final=True, callback=callback, disable_pbar=disable)
|
|
x /= ns.marginal_alpha(timesteps[-1])
|
|
return x
|