mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
656c0b5d90
More generic clip model class that can be used on more types of text encoders. Don't apply weighting algorithm when weight is 1.0 Don't compute an empty token output when it's not needed.
540 lines
21 KiB
Python
540 lines
21 KiB
Python
import os
|
|
|
|
from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextConfig, modeling_utils
|
|
import comfy.ops
|
|
import torch
|
|
import traceback
|
|
import zipfile
|
|
from . import model_management
|
|
import contextlib
|
|
|
|
def gen_empty_tokens(special_tokens, length):
|
|
start_token = special_tokens.get("start", None)
|
|
end_token = special_tokens.get("end", None)
|
|
pad_token = special_tokens.get("pad")
|
|
output = []
|
|
if start_token is not None:
|
|
output.append(start_token)
|
|
if end_token is not None:
|
|
output.append(end_token)
|
|
output += [pad_token] * (length - len(output))
|
|
return output
|
|
|
|
class ClipTokenWeightEncoder:
|
|
def encode_token_weights(self, token_weight_pairs):
|
|
to_encode = list()
|
|
max_token_len = 0
|
|
has_weights = False
|
|
for x in token_weight_pairs:
|
|
tokens = list(map(lambda a: a[0], x))
|
|
max_token_len = max(len(tokens), max_token_len)
|
|
has_weights = has_weights or not all(map(lambda a: a[1] == 1.0, x))
|
|
to_encode.append(tokens)
|
|
|
|
sections = len(to_encode)
|
|
if has_weights or sections == 0:
|
|
to_encode.append(gen_empty_tokens(self.special_tokens, max_token_len))
|
|
|
|
out, pooled = self.encode(to_encode)
|
|
if pooled is not None:
|
|
first_pooled = pooled[0:1].cpu()
|
|
else:
|
|
first_pooled = pooled
|
|
|
|
output = []
|
|
for k in range(0, sections):
|
|
z = out[k:k+1]
|
|
if has_weights:
|
|
z_empty = out[-1]
|
|
for i in range(len(z)):
|
|
for j in range(len(z[i])):
|
|
weight = token_weight_pairs[k][j][1]
|
|
if weight != 1.0:
|
|
z[i][j] = (z[i][j] - z_empty[j]) * weight + z_empty[j]
|
|
output.append(z)
|
|
|
|
if (len(output) == 0):
|
|
return out[-1:].cpu(), first_pooled
|
|
return torch.cat(output, dim=-2).cpu(), first_pooled
|
|
|
|
class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
|
"""Uses the CLIP transformer encoder for text (from huggingface)"""
|
|
LAYERS = [
|
|
"last",
|
|
"pooled",
|
|
"hidden"
|
|
]
|
|
def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77,
|
|
freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, textmodel_path=None, dtype=None,
|
|
special_tokens={"start": 49406, "end": 49407, "pad": 49407},layer_norm_hidden_state=True, config_class=CLIPTextConfig,
|
|
model_class=CLIPTextModel, inner_name="text_model"): # clip-vit-base-patch32
|
|
super().__init__()
|
|
assert layer in self.LAYERS
|
|
self.num_layers = 12
|
|
if textmodel_path is not None:
|
|
self.transformer = model_class.from_pretrained(textmodel_path)
|
|
else:
|
|
if textmodel_json_config is None:
|
|
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")
|
|
config = config_class.from_json_file(textmodel_json_config)
|
|
self.num_layers = config.num_hidden_layers
|
|
with comfy.ops.use_comfy_ops(device, dtype):
|
|
with modeling_utils.no_init_weights():
|
|
self.transformer = model_class(config)
|
|
|
|
self.inner_name = inner_name
|
|
if dtype is not None:
|
|
self.transformer.to(dtype)
|
|
inner_model = getattr(self.transformer, self.inner_name)
|
|
if hasattr(inner_model, "embeddings"):
|
|
inner_model.embeddings.to(torch.float32)
|
|
else:
|
|
self.transformer.set_input_embeddings(self.transformer.get_input_embeddings().to(torch.float32))
|
|
|
|
self.max_length = max_length
|
|
if freeze:
|
|
self.freeze()
|
|
self.layer = layer
|
|
self.layer_idx = None
|
|
self.special_tokens = special_tokens
|
|
self.text_projection = torch.nn.Parameter(torch.eye(self.transformer.get_input_embeddings().weight.shape[1]))
|
|
self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
|
|
self.enable_attention_masks = False
|
|
|
|
self.layer_norm_hidden_state = layer_norm_hidden_state
|
|
if layer == "hidden":
|
|
assert layer_idx is not None
|
|
assert abs(layer_idx) <= self.num_layers
|
|
self.clip_layer(layer_idx)
|
|
self.layer_default = (self.layer, self.layer_idx)
|
|
|
|
def freeze(self):
|
|
self.transformer = self.transformer.eval()
|
|
#self.train = disabled_train
|
|
for param in self.parameters():
|
|
param.requires_grad = False
|
|
|
|
def clip_layer(self, layer_idx):
|
|
if abs(layer_idx) >= self.num_layers:
|
|
self.layer = "last"
|
|
else:
|
|
self.layer = "hidden"
|
|
self.layer_idx = layer_idx
|
|
|
|
def reset_clip_layer(self):
|
|
self.layer = self.layer_default[0]
|
|
self.layer_idx = self.layer_default[1]
|
|
|
|
def set_up_textual_embeddings(self, tokens, current_embeds):
|
|
out_tokens = []
|
|
next_new_token = token_dict_size = current_embeds.weight.shape[0] - 1
|
|
embedding_weights = []
|
|
|
|
for x in tokens:
|
|
tokens_temp = []
|
|
for y in x:
|
|
if isinstance(y, int):
|
|
if y == token_dict_size: #EOS token
|
|
y = -1
|
|
tokens_temp += [y]
|
|
else:
|
|
if y.shape[0] == current_embeds.weight.shape[1]:
|
|
embedding_weights += [y]
|
|
tokens_temp += [next_new_token]
|
|
next_new_token += 1
|
|
else:
|
|
print("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored", y.shape[0], current_embeds.weight.shape[1])
|
|
while len(tokens_temp) < len(x):
|
|
tokens_temp += [self.special_tokens["pad"]]
|
|
out_tokens += [tokens_temp]
|
|
|
|
n = token_dict_size
|
|
if len(embedding_weights) > 0:
|
|
new_embedding = torch.nn.Embedding(next_new_token + 1, current_embeds.weight.shape[1], device=current_embeds.weight.device, dtype=current_embeds.weight.dtype)
|
|
new_embedding.weight[:token_dict_size] = current_embeds.weight[:-1]
|
|
for x in embedding_weights:
|
|
new_embedding.weight[n] = x
|
|
n += 1
|
|
new_embedding.weight[n] = current_embeds.weight[-1] #EOS embedding
|
|
self.transformer.set_input_embeddings(new_embedding)
|
|
|
|
processed_tokens = []
|
|
for x in out_tokens:
|
|
processed_tokens += [list(map(lambda a: n if a == -1 else a, x))] #The EOS token should always be the largest one
|
|
|
|
return processed_tokens
|
|
|
|
def forward(self, tokens):
|
|
backup_embeds = self.transformer.get_input_embeddings()
|
|
device = backup_embeds.weight.device
|
|
tokens = self.set_up_textual_embeddings(tokens, backup_embeds)
|
|
tokens = torch.LongTensor(tokens).to(device)
|
|
|
|
if getattr(self.transformer, self.inner_name).final_layer_norm.weight.dtype != torch.float32:
|
|
precision_scope = torch.autocast
|
|
else:
|
|
precision_scope = lambda a, b: contextlib.nullcontext(a)
|
|
|
|
with precision_scope(model_management.get_autocast_device(device), torch.float32):
|
|
attention_mask = None
|
|
if self.enable_attention_masks:
|
|
attention_mask = torch.zeros_like(tokens)
|
|
max_token = self.transformer.get_input_embeddings().weight.shape[0] - 1
|
|
for x in range(attention_mask.shape[0]):
|
|
for y in range(attention_mask.shape[1]):
|
|
attention_mask[x, y] = 1
|
|
if tokens[x, y] == max_token:
|
|
break
|
|
|
|
outputs = self.transformer(input_ids=tokens, attention_mask=attention_mask, output_hidden_states=self.layer=="hidden")
|
|
self.transformer.set_input_embeddings(backup_embeds)
|
|
|
|
if self.layer == "last":
|
|
z = outputs.last_hidden_state
|
|
elif self.layer == "pooled":
|
|
z = outputs.pooler_output[:, None, :]
|
|
else:
|
|
z = outputs.hidden_states[self.layer_idx]
|
|
if self.layer_norm_hidden_state:
|
|
z = getattr(self.transformer, self.inner_name).final_layer_norm(z)
|
|
|
|
if hasattr(outputs, "pooler_output"):
|
|
pooled_output = outputs.pooler_output.float()
|
|
else:
|
|
pooled_output = None
|
|
|
|
if self.text_projection is not None and pooled_output is not None:
|
|
pooled_output = pooled_output.float().to(self.text_projection.device) @ self.text_projection.float()
|
|
return z.float(), pooled_output
|
|
|
|
def encode(self, tokens):
|
|
return self(tokens)
|
|
|
|
def load_sd(self, sd):
|
|
if "text_projection" in sd:
|
|
self.text_projection[:] = sd.pop("text_projection")
|
|
if "text_projection.weight" in sd:
|
|
self.text_projection[:] = sd.pop("text_projection.weight").transpose(0, 1)
|
|
return self.transformer.load_state_dict(sd, strict=False)
|
|
|
|
def parse_parentheses(string):
|
|
result = []
|
|
current_item = ""
|
|
nesting_level = 0
|
|
for char in string:
|
|
if char == "(":
|
|
if nesting_level == 0:
|
|
if current_item:
|
|
result.append(current_item)
|
|
current_item = "("
|
|
else:
|
|
current_item = "("
|
|
else:
|
|
current_item += char
|
|
nesting_level += 1
|
|
elif char == ")":
|
|
nesting_level -= 1
|
|
if nesting_level == 0:
|
|
result.append(current_item + ")")
|
|
current_item = ""
|
|
else:
|
|
current_item += char
|
|
else:
|
|
current_item += char
|
|
if current_item:
|
|
result.append(current_item)
|
|
return result
|
|
|
|
def token_weights(string, current_weight):
|
|
a = parse_parentheses(string)
|
|
out = []
|
|
for x in a:
|
|
weight = current_weight
|
|
if len(x) >= 2 and x[-1] == ')' and x[0] == '(':
|
|
x = x[1:-1]
|
|
xx = x.rfind(":")
|
|
weight *= 1.1
|
|
if xx > 0:
|
|
try:
|
|
weight = float(x[xx+1:])
|
|
x = x[:xx]
|
|
except:
|
|
pass
|
|
out += token_weights(x, weight)
|
|
else:
|
|
out += [(x, current_weight)]
|
|
return out
|
|
|
|
def escape_important(text):
|
|
text = text.replace("\\)", "\0\1")
|
|
text = text.replace("\\(", "\0\2")
|
|
return text
|
|
|
|
def unescape_important(text):
|
|
text = text.replace("\0\1", ")")
|
|
text = text.replace("\0\2", "(")
|
|
return text
|
|
|
|
def safe_load_embed_zip(embed_path):
|
|
with zipfile.ZipFile(embed_path) as myzip:
|
|
names = list(filter(lambda a: "data/" in a, myzip.namelist()))
|
|
names.reverse()
|
|
for n in names:
|
|
with myzip.open(n) as myfile:
|
|
data = myfile.read()
|
|
number = len(data) // 4
|
|
length_embed = 1024 #sd2.x
|
|
if number < 768:
|
|
continue
|
|
if number % 768 == 0:
|
|
length_embed = 768 #sd1.x
|
|
num_embeds = number // length_embed
|
|
embed = torch.frombuffer(data, dtype=torch.float)
|
|
out = embed.reshape((num_embeds, length_embed)).clone()
|
|
del embed
|
|
return out
|
|
|
|
def expand_directory_list(directories):
|
|
dirs = set()
|
|
for x in directories:
|
|
dirs.add(x)
|
|
for root, subdir, file in os.walk(x, followlinks=True):
|
|
dirs.add(root)
|
|
return list(dirs)
|
|
|
|
def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=None):
|
|
if isinstance(embedding_directory, str):
|
|
embedding_directory = [embedding_directory]
|
|
|
|
embedding_directory = expand_directory_list(embedding_directory)
|
|
|
|
valid_file = None
|
|
for embed_dir in embedding_directory:
|
|
embed_path = os.path.abspath(os.path.join(embed_dir, embedding_name))
|
|
embed_dir = os.path.abspath(embed_dir)
|
|
try:
|
|
if os.path.commonpath((embed_dir, embed_path)) != embed_dir:
|
|
continue
|
|
except:
|
|
continue
|
|
if not os.path.isfile(embed_path):
|
|
extensions = ['.safetensors', '.pt', '.bin']
|
|
for x in extensions:
|
|
t = embed_path + x
|
|
if os.path.isfile(t):
|
|
valid_file = t
|
|
break
|
|
else:
|
|
valid_file = embed_path
|
|
if valid_file is not None:
|
|
break
|
|
|
|
if valid_file is None:
|
|
return None
|
|
|
|
embed_path = valid_file
|
|
|
|
embed_out = None
|
|
|
|
try:
|
|
if embed_path.lower().endswith(".safetensors"):
|
|
import safetensors.torch
|
|
embed = safetensors.torch.load_file(embed_path, device="cpu")
|
|
else:
|
|
if 'weights_only' in torch.load.__code__.co_varnames:
|
|
try:
|
|
embed = torch.load(embed_path, weights_only=True, map_location="cpu")
|
|
except:
|
|
embed_out = safe_load_embed_zip(embed_path)
|
|
else:
|
|
embed = torch.load(embed_path, map_location="cpu")
|
|
except Exception as e:
|
|
print(traceback.format_exc())
|
|
print()
|
|
print("error loading embedding, skipping loading:", embedding_name)
|
|
return None
|
|
|
|
if embed_out is None:
|
|
if 'string_to_param' in embed:
|
|
values = embed['string_to_param'].values()
|
|
embed_out = next(iter(values))
|
|
elif isinstance(embed, list):
|
|
out_list = []
|
|
for x in range(len(embed)):
|
|
for k in embed[x]:
|
|
t = embed[x][k]
|
|
if t.shape[-1] != embedding_size:
|
|
continue
|
|
out_list.append(t.reshape(-1, t.shape[-1]))
|
|
embed_out = torch.cat(out_list, dim=0)
|
|
elif embed_key is not None and embed_key in embed:
|
|
embed_out = embed[embed_key]
|
|
else:
|
|
values = embed.values()
|
|
embed_out = next(iter(values))
|
|
return embed_out
|
|
|
|
class SDTokenizer:
|
|
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, pad_to_max_length=True):
|
|
if tokenizer_path is None:
|
|
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
|
|
self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path)
|
|
self.max_length = max_length
|
|
|
|
empty = self.tokenizer('')["input_ids"]
|
|
if has_start_token:
|
|
self.tokens_start = 1
|
|
self.start_token = empty[0]
|
|
self.end_token = empty[1]
|
|
else:
|
|
self.tokens_start = 0
|
|
self.start_token = None
|
|
self.end_token = empty[0]
|
|
self.pad_with_end = pad_with_end
|
|
self.pad_to_max_length = pad_to_max_length
|
|
|
|
vocab = self.tokenizer.get_vocab()
|
|
self.inv_vocab = {v: k for k, v in vocab.items()}
|
|
self.embedding_directory = embedding_directory
|
|
self.max_word_length = 8
|
|
self.embedding_identifier = "embedding:"
|
|
self.embedding_size = embedding_size
|
|
self.embedding_key = embedding_key
|
|
|
|
def _try_get_embedding(self, embedding_name:str):
|
|
'''
|
|
Takes a potential embedding name and tries to retrieve it.
|
|
Returns a Tuple consisting of the embedding and any leftover string, embedding can be None.
|
|
'''
|
|
embed = load_embed(embedding_name, self.embedding_directory, self.embedding_size, self.embedding_key)
|
|
if embed is None:
|
|
stripped = embedding_name.strip(',')
|
|
if len(stripped) < len(embedding_name):
|
|
embed = load_embed(stripped, self.embedding_directory, self.embedding_size, self.embedding_key)
|
|
return (embed, embedding_name[len(stripped):])
|
|
return (embed, "")
|
|
|
|
|
|
def tokenize_with_weights(self, text:str, return_word_ids=False):
|
|
'''
|
|
Takes a prompt and converts it to a list of (token, weight, word id) elements.
|
|
Tokens can both be integer tokens and pre computed CLIP tensors.
|
|
Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens.
|
|
Returned list has the dimensions NxM where M is the input size of CLIP
|
|
'''
|
|
if self.pad_with_end:
|
|
pad_token = self.end_token
|
|
else:
|
|
pad_token = 0
|
|
|
|
text = escape_important(text)
|
|
parsed_weights = token_weights(text, 1.0)
|
|
|
|
#tokenize words
|
|
tokens = []
|
|
for weighted_segment, weight in parsed_weights:
|
|
to_tokenize = unescape_important(weighted_segment).replace("\n", " ").split(' ')
|
|
to_tokenize = [x for x in to_tokenize if x != ""]
|
|
for word in to_tokenize:
|
|
#if we find an embedding, deal with the embedding
|
|
if word.startswith(self.embedding_identifier) and self.embedding_directory is not None:
|
|
embedding_name = word[len(self.embedding_identifier):].strip('\n')
|
|
embed, leftover = self._try_get_embedding(embedding_name)
|
|
if embed is None:
|
|
print(f"warning, embedding:{embedding_name} does not exist, ignoring")
|
|
else:
|
|
if len(embed.shape) == 1:
|
|
tokens.append([(embed, weight)])
|
|
else:
|
|
tokens.append([(embed[x], weight) for x in range(embed.shape[0])])
|
|
#if we accidentally have leftover text, continue parsing using leftover, else move on to next word
|
|
if leftover != "":
|
|
word = leftover
|
|
else:
|
|
continue
|
|
#parse word
|
|
tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][self.tokens_start:-1]])
|
|
|
|
#reshape token array to CLIP input size
|
|
batched_tokens = []
|
|
batch = []
|
|
if self.start_token is not None:
|
|
batch.append((self.start_token, 1.0, 0))
|
|
batched_tokens.append(batch)
|
|
for i, t_group in enumerate(tokens):
|
|
#determine if we're going to try and keep the tokens in a single batch
|
|
is_large = len(t_group) >= self.max_word_length
|
|
|
|
while len(t_group) > 0:
|
|
if len(t_group) + len(batch) > self.max_length - 1:
|
|
remaining_length = self.max_length - len(batch) - 1
|
|
#break word in two and add end token
|
|
if is_large:
|
|
batch.extend([(t,w,i+1) for t,w in t_group[:remaining_length]])
|
|
batch.append((self.end_token, 1.0, 0))
|
|
t_group = t_group[remaining_length:]
|
|
#add end token and pad
|
|
else:
|
|
batch.append((self.end_token, 1.0, 0))
|
|
if self.pad_to_max_length:
|
|
batch.extend([(pad_token, 1.0, 0)] * (remaining_length))
|
|
#start new batch
|
|
batch = []
|
|
if self.start_token is not None:
|
|
batch.append((self.start_token, 1.0, 0))
|
|
batched_tokens.append(batch)
|
|
else:
|
|
batch.extend([(t,w,i+1) for t,w in t_group])
|
|
t_group = []
|
|
|
|
#fill last batch
|
|
batch.append((self.end_token, 1.0, 0))
|
|
if self.pad_to_max_length:
|
|
batch.extend([(pad_token, 1.0, 0)] * (self.max_length - len(batch)))
|
|
|
|
if not return_word_ids:
|
|
batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens]
|
|
|
|
return batched_tokens
|
|
|
|
|
|
def untokenize(self, token_weight_pair):
|
|
return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair))
|
|
|
|
|
|
class SD1Tokenizer:
|
|
def __init__(self, embedding_directory=None, clip_name="l", tokenizer=SDTokenizer):
|
|
self.clip_name = clip_name
|
|
self.clip = "clip_{}".format(self.clip_name)
|
|
setattr(self, self.clip, tokenizer(embedding_directory=embedding_directory))
|
|
|
|
def tokenize_with_weights(self, text:str, return_word_ids=False):
|
|
out = {}
|
|
out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids)
|
|
return out
|
|
|
|
def untokenize(self, token_weight_pair):
|
|
return getattr(self, self.clip).untokenize(token_weight_pair)
|
|
|
|
|
|
class SD1ClipModel(torch.nn.Module):
|
|
def __init__(self, device="cpu", dtype=None, clip_name="l", clip_model=SDClipModel, **kwargs):
|
|
super().__init__()
|
|
self.clip_name = clip_name
|
|
self.clip = "clip_{}".format(self.clip_name)
|
|
setattr(self, self.clip, clip_model(device=device, dtype=dtype, **kwargs))
|
|
|
|
def clip_layer(self, layer_idx):
|
|
getattr(self, self.clip).clip_layer(layer_idx)
|
|
|
|
def reset_clip_layer(self):
|
|
getattr(self, self.clip).reset_clip_layer()
|
|
|
|
def encode_token_weights(self, token_weight_pairs):
|
|
token_weight_pairs = token_weight_pairs[self.clip_name]
|
|
out, pooled = getattr(self, self.clip).encode_token_weights(token_weight_pairs)
|
|
return out, pooled
|
|
|
|
def load_sd(self, sd):
|
|
return getattr(self, self.clip).load_sd(sd)
|