ComfyUI/comfy/sd2_clip.py
comfyanonymous 656c0b5d90 CLIP code refactor and improvements.
More generic clip model class that can be used on more types of text
encoders.

Don't apply weighting algorithm when weight is 1.0

Don't compute an empty token output when it's not needed.
2023-11-06 14:17:41 -05:00

25 lines
1.3 KiB
Python

from comfy import sd1_clip
import torch
import os
class SD2ClipHModel(sd1_clip.SDClipModel):
def __init__(self, arch="ViT-H-14", device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, textmodel_path=None, dtype=None):
if layer == "penultimate":
layer="hidden"
layer_idx=23
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd2_clip_config.json")
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, textmodel_path=textmodel_path, dtype=dtype, special_tokens={"start": 49406, "end": 49407, "pad": 0})
class SD2ClipHTokenizer(sd1_clip.SDTokenizer):
def __init__(self, tokenizer_path=None, embedding_directory=None):
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1024)
class SD2Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None):
super().__init__(embedding_directory=embedding_directory, clip_name="h", tokenizer=SD2ClipHTokenizer)
class SD2ClipModel(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None, **kwargs):
super().__init__(device=device, dtype=dtype, clip_name="h", clip_model=SD2ClipHModel, **kwargs)