mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
469 lines
18 KiB
HTML
469 lines
18 KiB
HTML
<html>
|
|
<head>
|
|
<link rel="stylesheet" type="text/css" href="litegraph.css">
|
|
<script type="text/javascript" src="litegraph.core.js"></script>
|
|
</head>
|
|
<body style='width:100%; height:100%'>
|
|
<canvas id='mycanvas' width='1000' height='1000' style='width: 100%; height: 100%;'></canvas>
|
|
<script>
|
|
var graph = new LGraph();
|
|
|
|
var canvas = new LGraphCanvas("#mycanvas", graph);
|
|
|
|
const ccc = document.getElementById("mycanvas");
|
|
const ctx = ccc.getContext("2d");
|
|
|
|
// Resize the canvas to match the size of the canvas element
|
|
function resizeCanvas() {
|
|
ccc.width = ccc.offsetWidth;
|
|
ccc.height = ccc.offsetHeight;
|
|
canvas.draw(true, true);
|
|
}
|
|
// call the function when the page loads
|
|
resizeCanvas();
|
|
// call the function when the window is resized
|
|
window.addEventListener("resize", resizeCanvas);
|
|
|
|
|
|
var default_graph = {"last_node_id":9,"last_link_id":9,"nodes":[{"id":7,"type":"CLIPTextEncode","pos":[413,389],"size":{"0":425.27801513671875,"1":180.6060791015625},"flags":{},"order":3,"mode":0,"inputs":[{"name":"clip","type":"CLIP","link":5}],"outputs":[{"name":"CONDITIONING","type":"CONDITIONING","links":[6],"slot_index":0}],"properties":{},"widgets_values":["bad hands"]},{"id":6,"type":"CLIPTextEncode","pos":[415,186],"size":{"0":422.84503173828125,"1":164.31304931640625},"flags":{},"order":2,"mode":0,"inputs":[{"name":"clip","type":"CLIP","link":3}],"outputs":[{"name":"CONDITIONING","type":"CONDITIONING","links":[4],"slot_index":0}],"properties":{},"widgets_values":["masterpiece best quality girl"]},{"id":5,"type":"EmptyLatentImage","pos":[473,609],"size":{"0":315,"1":106},"flags":{},"order":1,"mode":0,"outputs":[{"name":"LATENT","type":"LATENT","links":[2],"slot_index":0}],"properties":{},"widgets_values":[512,512,1]},{"id":3,"type":"KSampler","pos":[863,186],"size":{"0":315,"1":262},"flags":{},"order":4,"mode":0,"inputs":[{"name":"model","type":"MODEL","link":1},{"name":"positive","type":"CONDITIONING","link":4},{"name":"negative","type":"CONDITIONING","link":6},{"name":"latent_image","type":"LATENT","link":2}],"outputs":[{"name":"LATENT","type":"LATENT","links":[7],"slot_index":0}],"properties":{},"widgets_values":[8566257,true,20,8,"sample_euler","normal",1]},{"id":8,"type":"VAEDecode","pos":[1209,188],"size":{"0":210,"1":46},"flags":{},"order":5,"mode":0,"inputs":[{"name":"samples","type":"LATENT","link":7},{"name":"vae","type":"VAE","link":8}],"outputs":[{"name":"IMAGE","type":"IMAGE","links":[9],"slot_index":0}],"properties":{}},{"id":9,"type":"SaveImage","pos":[1451,189],"size":{"0":210,"1":26},"flags":{},"order":6,"mode":0,"inputs":[{"name":"images","type":"IMAGE","link":9}],"properties":{}},{"id":4,"type":"CheckpointLoader","pos":[26,474],"size":{"0":315,"1":122},"flags":{},"order":0,"mode":0,"outputs":[{"name":"MODEL","type":"MODEL","links":[1],"slot_index":0},{"name":"CLIP","type":"CLIP","links":[3,5],"slot_index":1},{"name":"VAE","type":"VAE","links":[8],"slot_index":2}],"properties":{},"widgets_values":["v1-inference.yaml","v1-5-pruned-emaonly.ckpt"]}],"links":[[1,4,0,3,0,"MODEL"],[2,5,0,3,3,"LATENT"],[3,4,1,6,0,"CLIP"],[4,6,0,3,1,"CONDITIONING"],[5,4,1,7,0,"CLIP"],[6,7,0,3,2,"CONDITIONING"],[7,3,0,8,0,"LATENT"],[8,4,2,8,1,"VAE"],[9,8,0,9,0,"IMAGE"]],"groups":[],"config":{},"extra":{},"version":0.4}
|
|
|
|
function loadGraphData(graph, graph_data)
|
|
{
|
|
graph.configure( graph_data);
|
|
for (let n in graph._nodes) {
|
|
n = graph._nodes[n];
|
|
s = n.computeSize();
|
|
s[0] = Math.max(n.size[0], s[0]);
|
|
s[1] = Math.max(n.size[1], s[1]);
|
|
n.size = s;
|
|
}
|
|
}
|
|
|
|
function afterLoadGraph()
|
|
{
|
|
let workflow = null;
|
|
try {
|
|
workflow = JSON.parse(localStorage.getItem("workflow"));
|
|
loadGraphData(graph, workflow);
|
|
} catch(err) {
|
|
}
|
|
|
|
if (!workflow) {
|
|
loadGraphData(graph, default_graph);
|
|
}
|
|
|
|
function saveGraph() {
|
|
localStorage.setItem("workflow", JSON.stringify(graph.serialize()));
|
|
}
|
|
|
|
setInterval(saveGraph, 1000);
|
|
|
|
}
|
|
|
|
function onObjectInfo(json) {
|
|
for (let key in json) {
|
|
function MyNode()
|
|
{
|
|
j = MyNode.__json_data;
|
|
inp = j['input']['required'];
|
|
this.class_comfy = MyNode.class_type_comfy;
|
|
this._widgets = []
|
|
min_height = 1;
|
|
min_width = 1;
|
|
for (let x in inp) {
|
|
let default_val = min_val = max_val = step_val = multiline = undefined;
|
|
if (inp[x].length > 1) {
|
|
default_val = inp[x][1]['default'];
|
|
min_val = inp[x][1]['min'];
|
|
max_val = inp[x][1]['max'];
|
|
step_val = inp[x][1]['step'];
|
|
multiline = inp[x][1]['multiline'];
|
|
}
|
|
|
|
let type = inp[x][0];
|
|
if (Array.isArray(type)) {
|
|
w = this.addWidget("combo", x, type[0], function(v){}, { values: type } );
|
|
this._widgets += [w]
|
|
} else if (type == "INT") {
|
|
if (default_val == undefined) default_val = 0;
|
|
if (min_val == undefined) min_val = 0;
|
|
if (max_val == undefined) max_val = 2048;
|
|
if (step_val == undefined) step_val = 1;
|
|
w = this.addWidget("number", x, default_val, function(v){let s = this.options.step / 10;this.value = Math.round( v / s ) * s;}, { min: min_val, max: max_val, step: 10.0 * step_val} );
|
|
this._widgets += [w]
|
|
if (x == "seed") {
|
|
w1 = this.addWidget("toggle", "Random seed after every gen", true, function(v){}, { on: "enabled", off:"disabled"} );
|
|
w1.to_randomize = w;
|
|
this._widgets += [w1]
|
|
}
|
|
} else if (type == "FLOAT") {
|
|
if (default_val == undefined) default_val = 0;
|
|
if (min_val == undefined) min_val = 0;
|
|
if (max_val == undefined) max_val = 2048;
|
|
if (step_val == undefined) step_val = 0.5;
|
|
|
|
// if (min_val == 0.0 && max_val == 1.0) {
|
|
// w = this.slider = this.addWidget("slider", x, default_val, function(v){}, { min: min_val, max: max_val} );
|
|
// } else {
|
|
w = this.addWidget("number", x, default_val, function(v){}, { min: min_val, max: max_val, step: 10.0 * step_val} );
|
|
// }
|
|
this._widgets += [w]
|
|
} else if (type == "STRING") {
|
|
if (default_val == undefined) default_val = "";
|
|
if (multiline == undefined) multiline = false;
|
|
|
|
if (multiline) {
|
|
var w = {
|
|
type: "customtext",
|
|
name: x,
|
|
get value() { return this.input_div.innerText;},
|
|
set value(x) { this.input_div.innerText = x;},
|
|
callback: function(v){console.log(v);},
|
|
options: {},
|
|
draw: function(ctx, node, widget_width, y, H){
|
|
var show_text = canvas.ds.scale > 0.5;
|
|
// this.input_div.style.top = `${y}px`;
|
|
let t = ctx.getTransform();
|
|
let margin = 15;
|
|
let x_div = t.a * margin * 2 + t.e;
|
|
let y_div = t.d * (y + H) + t.f;
|
|
let width_div = (widget_width - margin * 2) * t.a;
|
|
let height_div = (this.parent.size[1] - (y + H))* t.d;
|
|
this.input_div.style.left = `${x_div}px`;
|
|
this.input_div.style.top = `${y_div}px`;
|
|
this.input_div.style.width = width_div;
|
|
this.input_div.style.height = height_div;
|
|
this.input_div.style.position = 'absolute';
|
|
this.input_div.style.zIndex = 1;
|
|
this.input_div.style.fontSize = t.d * 10.0;
|
|
|
|
if (show_text) {
|
|
this.input_div.hidden = false;
|
|
} else {
|
|
this.input_div.hidden = true;
|
|
}
|
|
|
|
ctx.save();
|
|
// ctx.fillText(String(this.value).substr(0,30), 0, y + H * 0.7);
|
|
ctx.restore();
|
|
},
|
|
};
|
|
w.input_div = document.createElement('div');
|
|
w.input_div.contentEditable = true;
|
|
w.input_div.style.backgroundColor = "#FFFFFF";
|
|
w.input_div.style.overflow = 'hidden';
|
|
w.input_div.innerText = default_val;
|
|
document.addEventListener('click', function(event) {
|
|
if (!w.input_div.contains(event.target)) {
|
|
w.input_div.blur();
|
|
}
|
|
});
|
|
w.parent = this;
|
|
min_height = Math.max(min_height, 200);
|
|
min_width = Math.max(min_width, 400);
|
|
ccc.parentNode.appendChild(w.input_div);
|
|
|
|
w = this.addCustomWidget(w);
|
|
// w = this.addWidget("text", x, "", function(v){}, { multiline:true } );
|
|
console.log(w, this);
|
|
this._widgets += [w]
|
|
this.onRemoved = function() {
|
|
for (let y in this.widgets) {
|
|
if (this.widgets[y].input_div) {
|
|
this.widgets[y].input_div.remove();
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
w = this.addWidget("text", x, default_val, function(v){}, { multiline:false } );
|
|
this._widgets += [w];
|
|
}
|
|
} else {
|
|
this.addInput(x, type);
|
|
}
|
|
}
|
|
|
|
out = j['output'];
|
|
for (let x in out) {
|
|
this.addOutput(out[x], out[x]);
|
|
}
|
|
s = this.computeSize();
|
|
s[0] *= 1.5;
|
|
s[0] = Math.max(min_width, s[0]);
|
|
s[1] = Math.max(min_height, s[1]);
|
|
this.size = s;
|
|
this.serialize_widgets = true;
|
|
}
|
|
MyNode.title = json[key]['name'];
|
|
MyNode.class_type_comfy = json[key]['name'];
|
|
MyNode.__json_data = json[key]
|
|
|
|
LiteGraph.registerNodeType(key, MyNode);
|
|
MyNode.category = json[key]['category'];
|
|
};
|
|
|
|
afterLoadGraph();
|
|
// loadGraphData(graph, JSON.parse(base_txt2img_graph));
|
|
}
|
|
|
|
fetch("object_info", {cache: "no-store"})
|
|
.then(response => response.json())
|
|
.then(json => onObjectInfo(json));
|
|
|
|
|
|
//register in the system
|
|
graph.start();
|
|
// LiteGraph.registerNodeType("testing", MyAddNode);
|
|
|
|
|
|
graph.onNodeRemoved = function(n) {
|
|
for (let y in n.widgets) {
|
|
if (n.widgets[y].input_div) {
|
|
n.widgets[y].input_div.remove();
|
|
}
|
|
}
|
|
}
|
|
|
|
function graphToPrompt() {
|
|
let s = graph.serialize();
|
|
let output = {};
|
|
// console.log(s['nodes']);
|
|
nodes = s['nodes']
|
|
|
|
for (let x in nodes) {
|
|
let n = graph.getNodeById(nodes[x].id);
|
|
let input_ = {};
|
|
for (let y in n.widgets) {
|
|
input_[n.widgets[y].name] = n.widgets[y].value;
|
|
}
|
|
for (let y in n.inputs) {
|
|
let parent_node = n.getInputNode(y);
|
|
if (parent_node) {
|
|
for (let z in parent_node.outputs) {
|
|
let c_nodes = parent_node.getOutputNodes(z);
|
|
// console.log(c_nodes, z);
|
|
if (c_nodes) {
|
|
for (let zz in c_nodes) {
|
|
if (c_nodes[zz].id == n.id) {
|
|
input_[n.inputs[y].name] = [String(parent_node.id), parseInt(z)];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
let node = {}
|
|
node['inputs'] = input_;
|
|
node['class_type'] = n.class_comfy;
|
|
// inputs = x['inputs']
|
|
// inputs['name'], inputs['id']
|
|
// console.log(x, n);
|
|
// console.log(node);
|
|
output[String(n.id)] = node;
|
|
}
|
|
|
|
return output;
|
|
}
|
|
|
|
|
|
function promptPosted(data)
|
|
{
|
|
if (data.status == 400) {
|
|
data.text().then(dt => alert(dt));
|
|
return;
|
|
}
|
|
|
|
let s = graph.serialize();
|
|
let output = {};
|
|
// console.log(s['nodes']);
|
|
nodes = s['nodes']
|
|
|
|
for (let x in nodes) {
|
|
let n = graph.getNodeById(nodes[x].id);
|
|
for (let w in n.widgets) {
|
|
let wid = n.widgets[w];
|
|
if (Object.hasOwn(wid, 'to_randomize')) {
|
|
if (wid.value) {
|
|
wid.to_randomize.value = Math.floor(Math.random() * 1125899906842624);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
canvas.draw(true, true);
|
|
}
|
|
|
|
function postPrompt() {
|
|
let prompt = graphToPrompt();
|
|
let full_data = {prompt: prompt, extra_data: {extra_pnginfo: {workflow: graph.serialize()}}};
|
|
|
|
fetch('/prompt', {
|
|
method: 'POST',
|
|
headers: {
|
|
'Content-Type': 'application/json'
|
|
},
|
|
body: JSON.stringify(full_data)
|
|
})
|
|
.then(data => promptPosted(data))
|
|
.catch(error => console.error(error))
|
|
|
|
// console.log(JSON.stringify(prompt));
|
|
// console.log(JSON.stringify(graph.serialize()));
|
|
}
|
|
|
|
|
|
function promptToGraph(prompt) {
|
|
for (let x in prompt) {
|
|
|
|
}
|
|
}
|
|
|
|
function prompt_file_load(file)
|
|
{
|
|
if (file.type === 'image/png') {
|
|
const reader = new FileReader();
|
|
reader.onload = (event) => {
|
|
// Get the PNG data as a Uint8Array
|
|
const pngData = new Uint8Array(event.target.result);
|
|
const dataView = new DataView(pngData.buffer);
|
|
|
|
// Check that the PNG signature is present
|
|
if (dataView.getUint32(0) !== 0x89504e47) {
|
|
console.error('Not a valid PNG file');
|
|
return;
|
|
}
|
|
|
|
// Start searching for chunks after the PNG signature
|
|
let offset = 8;
|
|
let txt_chunks = {}
|
|
// Loop through the chunks in the PNG file
|
|
while (offset < pngData.length) {
|
|
// Get the length of the chunk
|
|
const length = dataView.getUint32(offset);
|
|
// Get the chunk type
|
|
const type = String.fromCharCode(...pngData.slice(offset + 4, offset + 8));
|
|
if (type === 'tEXt') {
|
|
// Get the keyword
|
|
let keyword_end = offset + 8;
|
|
while (pngData[keyword_end] !== 0) {
|
|
keyword_end++;
|
|
}
|
|
const keyword = String.fromCharCode(...pngData.slice(offset + 8, keyword_end));
|
|
// Get the text
|
|
const text = String.fromCharCode(...pngData.slice(keyword_end + 1, offset + 8 + length));
|
|
txt_chunks[keyword] = text;
|
|
}
|
|
|
|
// Get the next chunk
|
|
offset += 12 + length;
|
|
}
|
|
console.log(txt_chunks);
|
|
console.log(JSON.parse(txt_chunks["prompt"]));
|
|
loadGraphData(graph, JSON.parse(txt_chunks["workflow"]));
|
|
};
|
|
reader.readAsArrayBuffer(file);
|
|
} else if (file.type === "application/json" || file.name.endsWith(".json")) {
|
|
var reader = new FileReader();
|
|
reader.onload = function() {
|
|
console.log(reader.result);
|
|
var jsonData = JSON.parse(reader.result);
|
|
loadGraphData(graph, jsonData);
|
|
};
|
|
reader.readAsText(file);
|
|
}
|
|
}
|
|
|
|
// Get prompt from dropped PNG or json
|
|
document.addEventListener('drop', (event) => {
|
|
event.preventDefault();
|
|
event.stopPropagation();
|
|
const file = event.dataTransfer.files[0];
|
|
console.log(file.type);
|
|
prompt_file_load(file);
|
|
});
|
|
|
|
|
|
setInterval(function(){
|
|
fetch('/prompt')
|
|
.then(response => response.json())
|
|
.then(data => {
|
|
document.getElementById("queuesize").innerHTML = "Queue size: " + data.exec_info.queue_remaining + "";
|
|
}).catch((response) => {document.getElementById("queuesize").innerHTML = "Queue size: ERR"});
|
|
}, 500);
|
|
|
|
function clearGraph() {
|
|
graph.clear();
|
|
}
|
|
|
|
function loadTxt2Img() {
|
|
loadGraphData(graph, default_graph);
|
|
}
|
|
|
|
function saveGraph() {
|
|
var json = JSON.stringify(graph.serialize()); // convert the data to a JSON string
|
|
var blob = new Blob([json], {type: "application/json"});
|
|
var url = URL.createObjectURL(blob);
|
|
var a = document.createElement("a");
|
|
a.style = "display: none";
|
|
a.href = url;
|
|
a.download = "workflow.json";
|
|
document.body.appendChild(a);
|
|
a.click();
|
|
setTimeout(function() {
|
|
document.body.removeChild(a);
|
|
window.URL.revokeObjectURL(url);
|
|
}, 0);
|
|
}
|
|
|
|
var input = document.createElement("input");
|
|
input.setAttribute("type", "file");
|
|
input.setAttribute("accept", ".json,image/png");
|
|
input.style.display = "none";
|
|
document.body.appendChild(input);
|
|
|
|
input.addEventListener('change', function() {
|
|
var file = input.files[0];
|
|
prompt_file_load(file);
|
|
|
|
});
|
|
|
|
function loadGraph() {
|
|
input.click();
|
|
}
|
|
|
|
document.addEventListener('paste', e=>{
|
|
let data = (e.clipboardData || window.clipboardData).getData('text/plain');
|
|
console.log(data);
|
|
|
|
try {
|
|
data = data.slice(data.indexOf('{'));
|
|
j = JSON.parse(data);
|
|
} catch(err) {
|
|
data = data.slice(data.indexOf('workflow\n'));
|
|
data = data.slice(data.indexOf('{'));
|
|
j = JSON.parse(data);
|
|
}
|
|
|
|
|
|
if (Object.hasOwn(j, 'version') && Object.hasOwn(j, 'nodes') && Object.hasOwn(j, 'extra')) {
|
|
loadGraphData(graph, j);
|
|
}
|
|
});
|
|
|
|
|
|
</script>
|
|
|
|
<span style="font-size: 15px;position: absolute; top: 50%; right: 0%; background-color: white; text-align: center;">
|
|
<span id="queuesize">Queue size: X</span><br>
|
|
<button style="font-size: 20px;" id="queuebutton" onclick="postPrompt()">Queue Prompt</button><br>
|
|
<br>
|
|
<br>
|
|
<button style="font-size: 20px;" onclick="saveGraph()">Save</button><br>
|
|
<button style="font-size: 20px;" onclick="loadGraph()">Load</button><br>
|
|
<button style="font-size: 20px;" onclick="clearGraph()">Clear</button><br>
|
|
<button style="font-size: 20px;" onclick="loadTxt2Img()">Load Default</button><br>
|
|
</span>
|
|
</body>
|
|
</html>
|