mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
766c7b3815
Don't add SRFormer because the code license is incompatible with the GPL. Remove MAT because it's unused and the license is incompatible with GPL.
456 lines
14 KiB
Python
456 lines
14 KiB
Python
# pylint: skip-file
|
|
# -----------------------------------------------------------------------------------
|
|
# SCUNet: Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis, https://arxiv.org/abs/2203.13278
|
|
# Zhang, Kai and Li, Yawei and Liang, Jingyun and Cao, Jiezhang and Zhang, Yulun and Tang, Hao and Timofte, Radu and Van Gool, Luc
|
|
# -----------------------------------------------------------------------------------
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from einops import rearrange
|
|
from einops.layers.torch import Rearrange
|
|
|
|
from .timm.drop import DropPath
|
|
from .timm.weight_init import trunc_normal_
|
|
|
|
|
|
# Borrowed from https://github.com/cszn/SCUNet/blob/main/models/network_scunet.py
|
|
class WMSA(nn.Module):
|
|
"""Self-attention module in Swin Transformer"""
|
|
|
|
def __init__(self, input_dim, output_dim, head_dim, window_size, type):
|
|
super(WMSA, self).__init__()
|
|
self.input_dim = input_dim
|
|
self.output_dim = output_dim
|
|
self.head_dim = head_dim
|
|
self.scale = self.head_dim**-0.5
|
|
self.n_heads = input_dim // head_dim
|
|
self.window_size = window_size
|
|
self.type = type
|
|
self.embedding_layer = nn.Linear(self.input_dim, 3 * self.input_dim, bias=True)
|
|
|
|
self.relative_position_params = nn.Parameter(
|
|
torch.zeros((2 * window_size - 1) * (2 * window_size - 1), self.n_heads)
|
|
)
|
|
# TODO recover
|
|
# self.relative_position_params = nn.Parameter(torch.zeros(self.n_heads, 2 * window_size - 1, 2 * window_size -1))
|
|
self.relative_position_params = nn.Parameter(
|
|
torch.zeros((2 * window_size - 1) * (2 * window_size - 1), self.n_heads)
|
|
)
|
|
|
|
self.linear = nn.Linear(self.input_dim, self.output_dim)
|
|
|
|
trunc_normal_(self.relative_position_params, std=0.02)
|
|
self.relative_position_params = torch.nn.Parameter(
|
|
self.relative_position_params.view(
|
|
2 * window_size - 1, 2 * window_size - 1, self.n_heads
|
|
)
|
|
.transpose(1, 2)
|
|
.transpose(0, 1)
|
|
)
|
|
|
|
def generate_mask(self, h, w, p, shift):
|
|
"""generating the mask of SW-MSA
|
|
Args:
|
|
shift: shift parameters in CyclicShift.
|
|
Returns:
|
|
attn_mask: should be (1 1 w p p),
|
|
"""
|
|
# supporting square.
|
|
attn_mask = torch.zeros(
|
|
h,
|
|
w,
|
|
p,
|
|
p,
|
|
p,
|
|
p,
|
|
dtype=torch.bool,
|
|
device=self.relative_position_params.device,
|
|
)
|
|
if self.type == "W":
|
|
return attn_mask
|
|
|
|
s = p - shift
|
|
attn_mask[-1, :, :s, :, s:, :] = True
|
|
attn_mask[-1, :, s:, :, :s, :] = True
|
|
attn_mask[:, -1, :, :s, :, s:] = True
|
|
attn_mask[:, -1, :, s:, :, :s] = True
|
|
attn_mask = rearrange(
|
|
attn_mask, "w1 w2 p1 p2 p3 p4 -> 1 1 (w1 w2) (p1 p2) (p3 p4)"
|
|
)
|
|
return attn_mask
|
|
|
|
def forward(self, x):
|
|
"""Forward pass of Window Multi-head Self-attention module.
|
|
Args:
|
|
x: input tensor with shape of [b h w c];
|
|
attn_mask: attention mask, fill -inf where the value is True;
|
|
Returns:
|
|
output: tensor shape [b h w c]
|
|
"""
|
|
if self.type != "W":
|
|
x = torch.roll(
|
|
x,
|
|
shifts=(-(self.window_size // 2), -(self.window_size // 2)),
|
|
dims=(1, 2),
|
|
)
|
|
|
|
x = rearrange(
|
|
x,
|
|
"b (w1 p1) (w2 p2) c -> b w1 w2 p1 p2 c",
|
|
p1=self.window_size,
|
|
p2=self.window_size,
|
|
)
|
|
h_windows = x.size(1)
|
|
w_windows = x.size(2)
|
|
# square validation
|
|
# assert h_windows == w_windows
|
|
|
|
x = rearrange(
|
|
x,
|
|
"b w1 w2 p1 p2 c -> b (w1 w2) (p1 p2) c",
|
|
p1=self.window_size,
|
|
p2=self.window_size,
|
|
)
|
|
qkv = self.embedding_layer(x)
|
|
q, k, v = rearrange(
|
|
qkv, "b nw np (threeh c) -> threeh b nw np c", c=self.head_dim
|
|
).chunk(3, dim=0)
|
|
sim = torch.einsum("hbwpc,hbwqc->hbwpq", q, k) * self.scale
|
|
# Adding learnable relative embedding
|
|
sim = sim + rearrange(self.relative_embedding(), "h p q -> h 1 1 p q")
|
|
# Using Attn Mask to distinguish different subwindows.
|
|
if self.type != "W":
|
|
attn_mask = self.generate_mask(
|
|
h_windows, w_windows, self.window_size, shift=self.window_size // 2
|
|
)
|
|
sim = sim.masked_fill_(attn_mask, float("-inf"))
|
|
|
|
probs = nn.functional.softmax(sim, dim=-1)
|
|
output = torch.einsum("hbwij,hbwjc->hbwic", probs, v)
|
|
output = rearrange(output, "h b w p c -> b w p (h c)")
|
|
output = self.linear(output)
|
|
output = rearrange(
|
|
output,
|
|
"b (w1 w2) (p1 p2) c -> b (w1 p1) (w2 p2) c",
|
|
w1=h_windows,
|
|
p1=self.window_size,
|
|
)
|
|
|
|
if self.type != "W":
|
|
output = torch.roll(
|
|
output,
|
|
shifts=(self.window_size // 2, self.window_size // 2),
|
|
dims=(1, 2),
|
|
)
|
|
|
|
return output
|
|
|
|
def relative_embedding(self):
|
|
cord = torch.tensor(
|
|
np.array(
|
|
[
|
|
[i, j]
|
|
for i in range(self.window_size)
|
|
for j in range(self.window_size)
|
|
]
|
|
)
|
|
)
|
|
relation = cord[:, None, :] - cord[None, :, :] + self.window_size - 1
|
|
# negative is allowed
|
|
return self.relative_position_params[
|
|
:, relation[:, :, 0].long(), relation[:, :, 1].long()
|
|
]
|
|
|
|
|
|
class Block(nn.Module):
|
|
def __init__(
|
|
self,
|
|
input_dim,
|
|
output_dim,
|
|
head_dim,
|
|
window_size,
|
|
drop_path,
|
|
type="W",
|
|
input_resolution=None,
|
|
):
|
|
"""SwinTransformer Block"""
|
|
super(Block, self).__init__()
|
|
self.input_dim = input_dim
|
|
self.output_dim = output_dim
|
|
assert type in ["W", "SW"]
|
|
self.type = type
|
|
if input_resolution <= window_size:
|
|
self.type = "W"
|
|
|
|
self.ln1 = nn.LayerNorm(input_dim)
|
|
self.msa = WMSA(input_dim, input_dim, head_dim, window_size, self.type)
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
|
self.ln2 = nn.LayerNorm(input_dim)
|
|
self.mlp = nn.Sequential(
|
|
nn.Linear(input_dim, 4 * input_dim),
|
|
nn.GELU(),
|
|
nn.Linear(4 * input_dim, output_dim),
|
|
)
|
|
|
|
def forward(self, x):
|
|
x = x + self.drop_path(self.msa(self.ln1(x)))
|
|
x = x + self.drop_path(self.mlp(self.ln2(x)))
|
|
return x
|
|
|
|
|
|
class ConvTransBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
conv_dim,
|
|
trans_dim,
|
|
head_dim,
|
|
window_size,
|
|
drop_path,
|
|
type="W",
|
|
input_resolution=None,
|
|
):
|
|
"""SwinTransformer and Conv Block"""
|
|
super(ConvTransBlock, self).__init__()
|
|
self.conv_dim = conv_dim
|
|
self.trans_dim = trans_dim
|
|
self.head_dim = head_dim
|
|
self.window_size = window_size
|
|
self.drop_path = drop_path
|
|
self.type = type
|
|
self.input_resolution = input_resolution
|
|
|
|
assert self.type in ["W", "SW"]
|
|
if self.input_resolution <= self.window_size:
|
|
self.type = "W"
|
|
|
|
self.trans_block = Block(
|
|
self.trans_dim,
|
|
self.trans_dim,
|
|
self.head_dim,
|
|
self.window_size,
|
|
self.drop_path,
|
|
self.type,
|
|
self.input_resolution,
|
|
)
|
|
self.conv1_1 = nn.Conv2d(
|
|
self.conv_dim + self.trans_dim,
|
|
self.conv_dim + self.trans_dim,
|
|
1,
|
|
1,
|
|
0,
|
|
bias=True,
|
|
)
|
|
self.conv1_2 = nn.Conv2d(
|
|
self.conv_dim + self.trans_dim,
|
|
self.conv_dim + self.trans_dim,
|
|
1,
|
|
1,
|
|
0,
|
|
bias=True,
|
|
)
|
|
|
|
self.conv_block = nn.Sequential(
|
|
nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False),
|
|
nn.ReLU(True),
|
|
nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False),
|
|
)
|
|
|
|
def forward(self, x):
|
|
conv_x, trans_x = torch.split(
|
|
self.conv1_1(x), (self.conv_dim, self.trans_dim), dim=1
|
|
)
|
|
conv_x = self.conv_block(conv_x) + conv_x
|
|
trans_x = Rearrange("b c h w -> b h w c")(trans_x)
|
|
trans_x = self.trans_block(trans_x)
|
|
trans_x = Rearrange("b h w c -> b c h w")(trans_x)
|
|
res = self.conv1_2(torch.cat((conv_x, trans_x), dim=1))
|
|
x = x + res
|
|
|
|
return x
|
|
|
|
|
|
class SCUNet(nn.Module):
|
|
def __init__(
|
|
self,
|
|
state_dict,
|
|
in_nc=3,
|
|
config=[4, 4, 4, 4, 4, 4, 4],
|
|
dim=64,
|
|
drop_path_rate=0.0,
|
|
input_resolution=256,
|
|
):
|
|
super(SCUNet, self).__init__()
|
|
self.model_arch = "SCUNet"
|
|
self.sub_type = "SR"
|
|
|
|
self.num_filters: int = 0
|
|
|
|
self.state = state_dict
|
|
self.config = config
|
|
self.dim = dim
|
|
self.head_dim = 32
|
|
self.window_size = 8
|
|
|
|
self.in_nc = in_nc
|
|
self.out_nc = self.in_nc
|
|
self.scale = 1
|
|
self.supports_fp16 = True
|
|
|
|
# drop path rate for each layer
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(config))]
|
|
|
|
self.m_head = [nn.Conv2d(in_nc, dim, 3, 1, 1, bias=False)]
|
|
|
|
begin = 0
|
|
self.m_down1 = [
|
|
ConvTransBlock(
|
|
dim // 2,
|
|
dim // 2,
|
|
self.head_dim,
|
|
self.window_size,
|
|
dpr[i + begin],
|
|
"W" if not i % 2 else "SW",
|
|
input_resolution,
|
|
)
|
|
for i in range(config[0])
|
|
] + [nn.Conv2d(dim, 2 * dim, 2, 2, 0, bias=False)]
|
|
|
|
begin += config[0]
|
|
self.m_down2 = [
|
|
ConvTransBlock(
|
|
dim,
|
|
dim,
|
|
self.head_dim,
|
|
self.window_size,
|
|
dpr[i + begin],
|
|
"W" if not i % 2 else "SW",
|
|
input_resolution // 2,
|
|
)
|
|
for i in range(config[1])
|
|
] + [nn.Conv2d(2 * dim, 4 * dim, 2, 2, 0, bias=False)]
|
|
|
|
begin += config[1]
|
|
self.m_down3 = [
|
|
ConvTransBlock(
|
|
2 * dim,
|
|
2 * dim,
|
|
self.head_dim,
|
|
self.window_size,
|
|
dpr[i + begin],
|
|
"W" if not i % 2 else "SW",
|
|
input_resolution // 4,
|
|
)
|
|
for i in range(config[2])
|
|
] + [nn.Conv2d(4 * dim, 8 * dim, 2, 2, 0, bias=False)]
|
|
|
|
begin += config[2]
|
|
self.m_body = [
|
|
ConvTransBlock(
|
|
4 * dim,
|
|
4 * dim,
|
|
self.head_dim,
|
|
self.window_size,
|
|
dpr[i + begin],
|
|
"W" if not i % 2 else "SW",
|
|
input_resolution // 8,
|
|
)
|
|
for i in range(config[3])
|
|
]
|
|
|
|
begin += config[3]
|
|
self.m_up3 = [
|
|
nn.ConvTranspose2d(8 * dim, 4 * dim, 2, 2, 0, bias=False),
|
|
] + [
|
|
ConvTransBlock(
|
|
2 * dim,
|
|
2 * dim,
|
|
self.head_dim,
|
|
self.window_size,
|
|
dpr[i + begin],
|
|
"W" if not i % 2 else "SW",
|
|
input_resolution // 4,
|
|
)
|
|
for i in range(config[4])
|
|
]
|
|
|
|
begin += config[4]
|
|
self.m_up2 = [
|
|
nn.ConvTranspose2d(4 * dim, 2 * dim, 2, 2, 0, bias=False),
|
|
] + [
|
|
ConvTransBlock(
|
|
dim,
|
|
dim,
|
|
self.head_dim,
|
|
self.window_size,
|
|
dpr[i + begin],
|
|
"W" if not i % 2 else "SW",
|
|
input_resolution // 2,
|
|
)
|
|
for i in range(config[5])
|
|
]
|
|
|
|
begin += config[5]
|
|
self.m_up1 = [
|
|
nn.ConvTranspose2d(2 * dim, dim, 2, 2, 0, bias=False),
|
|
] + [
|
|
ConvTransBlock(
|
|
dim // 2,
|
|
dim // 2,
|
|
self.head_dim,
|
|
self.window_size,
|
|
dpr[i + begin],
|
|
"W" if not i % 2 else "SW",
|
|
input_resolution,
|
|
)
|
|
for i in range(config[6])
|
|
]
|
|
|
|
self.m_tail = [nn.Conv2d(dim, in_nc, 3, 1, 1, bias=False)]
|
|
|
|
self.m_head = nn.Sequential(*self.m_head)
|
|
self.m_down1 = nn.Sequential(*self.m_down1)
|
|
self.m_down2 = nn.Sequential(*self.m_down2)
|
|
self.m_down3 = nn.Sequential(*self.m_down3)
|
|
self.m_body = nn.Sequential(*self.m_body)
|
|
self.m_up3 = nn.Sequential(*self.m_up3)
|
|
self.m_up2 = nn.Sequential(*self.m_up2)
|
|
self.m_up1 = nn.Sequential(*self.m_up1)
|
|
self.m_tail = nn.Sequential(*self.m_tail)
|
|
# self.apply(self._init_weights)
|
|
self.load_state_dict(state_dict, strict=True)
|
|
|
|
def check_image_size(self, x):
|
|
_, _, h, w = x.size()
|
|
mod_pad_h = (64 - h % 64) % 64
|
|
mod_pad_w = (64 - w % 64) % 64
|
|
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), "reflect")
|
|
return x
|
|
|
|
def forward(self, x0):
|
|
h, w = x0.size()[-2:]
|
|
x0 = self.check_image_size(x0)
|
|
|
|
x1 = self.m_head(x0)
|
|
x2 = self.m_down1(x1)
|
|
x3 = self.m_down2(x2)
|
|
x4 = self.m_down3(x3)
|
|
x = self.m_body(x4)
|
|
x = self.m_up3(x + x4)
|
|
x = self.m_up2(x + x3)
|
|
x = self.m_up1(x + x2)
|
|
x = self.m_tail(x + x1)
|
|
|
|
x = x[:, :, :h, :w]
|
|
return x
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, nn.Linear):
|
|
trunc_normal_(m.weight, std=0.02)
|
|
if m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.LayerNorm):
|
|
nn.init.constant_(m.bias, 0)
|
|
nn.init.constant_(m.weight, 1.0)
|