mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-11 02:15:17 +00:00
57e8bf6a9f
Now the only symptom of code messing up and keeping references to a model object when it should not will be endless prints in the log instead of the next workflow crashing ComfyUI.
1111 lines
34 KiB
Python
1111 lines
34 KiB
Python
"""
|
|
This file is part of ComfyUI.
|
|
Copyright (C) 2024 Comfy
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
"""
|
|
|
|
import psutil
|
|
import logging
|
|
from enum import Enum
|
|
from comfy.cli_args import args
|
|
import torch
|
|
import sys
|
|
import platform
|
|
import weakref
|
|
import gc
|
|
|
|
class VRAMState(Enum):
|
|
DISABLED = 0 #No vram present: no need to move models to vram
|
|
NO_VRAM = 1 #Very low vram: enable all the options to save vram
|
|
LOW_VRAM = 2
|
|
NORMAL_VRAM = 3
|
|
HIGH_VRAM = 4
|
|
SHARED = 5 #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.
|
|
|
|
class CPUState(Enum):
|
|
GPU = 0
|
|
CPU = 1
|
|
MPS = 2
|
|
|
|
# Determine VRAM State
|
|
vram_state = VRAMState.NORMAL_VRAM
|
|
set_vram_to = VRAMState.NORMAL_VRAM
|
|
cpu_state = CPUState.GPU
|
|
|
|
total_vram = 0
|
|
|
|
xpu_available = False
|
|
torch_version = ""
|
|
try:
|
|
torch_version = torch.version.__version__
|
|
xpu_available = (int(torch_version[0]) < 2 or (int(torch_version[0]) == 2 and int(torch_version[2]) <= 4)) and torch.xpu.is_available()
|
|
except:
|
|
pass
|
|
|
|
lowvram_available = True
|
|
if args.deterministic:
|
|
logging.info("Using deterministic algorithms for pytorch")
|
|
torch.use_deterministic_algorithms(True, warn_only=True)
|
|
|
|
directml_enabled = False
|
|
if args.directml is not None:
|
|
import torch_directml
|
|
directml_enabled = True
|
|
device_index = args.directml
|
|
if device_index < 0:
|
|
directml_device = torch_directml.device()
|
|
else:
|
|
directml_device = torch_directml.device(device_index)
|
|
logging.info("Using directml with device: {}".format(torch_directml.device_name(device_index)))
|
|
# torch_directml.disable_tiled_resources(True)
|
|
lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
|
|
|
|
try:
|
|
import intel_extension_for_pytorch as ipex
|
|
_ = torch.xpu.device_count()
|
|
xpu_available = torch.xpu.is_available()
|
|
except:
|
|
xpu_available = xpu_available or (hasattr(torch, "xpu") and torch.xpu.is_available())
|
|
|
|
try:
|
|
if torch.backends.mps.is_available():
|
|
cpu_state = CPUState.MPS
|
|
import torch.mps
|
|
except:
|
|
pass
|
|
|
|
if args.cpu:
|
|
cpu_state = CPUState.CPU
|
|
|
|
def is_intel_xpu():
|
|
global cpu_state
|
|
global xpu_available
|
|
if cpu_state == CPUState.GPU:
|
|
if xpu_available:
|
|
return True
|
|
return False
|
|
|
|
def get_torch_device():
|
|
global directml_enabled
|
|
global cpu_state
|
|
if directml_enabled:
|
|
global directml_device
|
|
return directml_device
|
|
if cpu_state == CPUState.MPS:
|
|
return torch.device("mps")
|
|
if cpu_state == CPUState.CPU:
|
|
return torch.device("cpu")
|
|
else:
|
|
if is_intel_xpu():
|
|
return torch.device("xpu", torch.xpu.current_device())
|
|
else:
|
|
return torch.device(torch.cuda.current_device())
|
|
|
|
def get_total_memory(dev=None, torch_total_too=False):
|
|
global directml_enabled
|
|
if dev is None:
|
|
dev = get_torch_device()
|
|
|
|
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
|
|
mem_total = psutil.virtual_memory().total
|
|
mem_total_torch = mem_total
|
|
else:
|
|
if directml_enabled:
|
|
mem_total = 1024 * 1024 * 1024 #TODO
|
|
mem_total_torch = mem_total
|
|
elif is_intel_xpu():
|
|
stats = torch.xpu.memory_stats(dev)
|
|
mem_reserved = stats['reserved_bytes.all.current']
|
|
mem_total_torch = mem_reserved
|
|
mem_total = torch.xpu.get_device_properties(dev).total_memory
|
|
else:
|
|
stats = torch.cuda.memory_stats(dev)
|
|
mem_reserved = stats['reserved_bytes.all.current']
|
|
_, mem_total_cuda = torch.cuda.mem_get_info(dev)
|
|
mem_total_torch = mem_reserved
|
|
mem_total = mem_total_cuda
|
|
|
|
if torch_total_too:
|
|
return (mem_total, mem_total_torch)
|
|
else:
|
|
return mem_total
|
|
|
|
total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
|
|
total_ram = psutil.virtual_memory().total / (1024 * 1024)
|
|
logging.info("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
|
|
|
|
try:
|
|
logging.info("pytorch version: {}".format(torch_version))
|
|
except:
|
|
pass
|
|
|
|
try:
|
|
OOM_EXCEPTION = torch.cuda.OutOfMemoryError
|
|
except:
|
|
OOM_EXCEPTION = Exception
|
|
|
|
XFORMERS_VERSION = ""
|
|
XFORMERS_ENABLED_VAE = True
|
|
if args.disable_xformers:
|
|
XFORMERS_IS_AVAILABLE = False
|
|
else:
|
|
try:
|
|
import xformers
|
|
import xformers.ops
|
|
XFORMERS_IS_AVAILABLE = True
|
|
try:
|
|
XFORMERS_IS_AVAILABLE = xformers._has_cpp_library
|
|
except:
|
|
pass
|
|
try:
|
|
XFORMERS_VERSION = xformers.version.__version__
|
|
logging.info("xformers version: {}".format(XFORMERS_VERSION))
|
|
if XFORMERS_VERSION.startswith("0.0.18"):
|
|
logging.warning("\nWARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
|
|
logging.warning("Please downgrade or upgrade xformers to a different version.\n")
|
|
XFORMERS_ENABLED_VAE = False
|
|
except:
|
|
pass
|
|
except:
|
|
XFORMERS_IS_AVAILABLE = False
|
|
|
|
def is_nvidia():
|
|
global cpu_state
|
|
if cpu_state == CPUState.GPU:
|
|
if torch.version.cuda:
|
|
return True
|
|
return False
|
|
|
|
ENABLE_PYTORCH_ATTENTION = False
|
|
if args.use_pytorch_cross_attention:
|
|
ENABLE_PYTORCH_ATTENTION = True
|
|
XFORMERS_IS_AVAILABLE = False
|
|
|
|
VAE_DTYPES = [torch.float32]
|
|
|
|
try:
|
|
if is_nvidia():
|
|
if int(torch_version[0]) >= 2:
|
|
if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
|
|
ENABLE_PYTORCH_ATTENTION = True
|
|
if torch.cuda.is_bf16_supported() and torch.cuda.get_device_properties(torch.cuda.current_device()).major >= 8:
|
|
VAE_DTYPES = [torch.bfloat16] + VAE_DTYPES
|
|
if is_intel_xpu():
|
|
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
|
|
ENABLE_PYTORCH_ATTENTION = True
|
|
except:
|
|
pass
|
|
|
|
if is_intel_xpu():
|
|
VAE_DTYPES = [torch.bfloat16] + VAE_DTYPES
|
|
|
|
if args.cpu_vae:
|
|
VAE_DTYPES = [torch.float32]
|
|
|
|
|
|
if ENABLE_PYTORCH_ATTENTION:
|
|
torch.backends.cuda.enable_math_sdp(True)
|
|
torch.backends.cuda.enable_flash_sdp(True)
|
|
torch.backends.cuda.enable_mem_efficient_sdp(True)
|
|
|
|
if args.lowvram:
|
|
set_vram_to = VRAMState.LOW_VRAM
|
|
lowvram_available = True
|
|
elif args.novram:
|
|
set_vram_to = VRAMState.NO_VRAM
|
|
elif args.highvram or args.gpu_only:
|
|
vram_state = VRAMState.HIGH_VRAM
|
|
|
|
FORCE_FP32 = False
|
|
FORCE_FP16 = False
|
|
if args.force_fp32:
|
|
logging.info("Forcing FP32, if this improves things please report it.")
|
|
FORCE_FP32 = True
|
|
|
|
if args.force_fp16:
|
|
logging.info("Forcing FP16.")
|
|
FORCE_FP16 = True
|
|
|
|
if lowvram_available:
|
|
if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
|
|
vram_state = set_vram_to
|
|
|
|
|
|
if cpu_state != CPUState.GPU:
|
|
vram_state = VRAMState.DISABLED
|
|
|
|
if cpu_state == CPUState.MPS:
|
|
vram_state = VRAMState.SHARED
|
|
|
|
logging.info(f"Set vram state to: {vram_state.name}")
|
|
|
|
DISABLE_SMART_MEMORY = args.disable_smart_memory
|
|
|
|
if DISABLE_SMART_MEMORY:
|
|
logging.info("Disabling smart memory management")
|
|
|
|
def get_torch_device_name(device):
|
|
if hasattr(device, 'type'):
|
|
if device.type == "cuda":
|
|
try:
|
|
allocator_backend = torch.cuda.get_allocator_backend()
|
|
except:
|
|
allocator_backend = ""
|
|
return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
|
|
else:
|
|
return "{}".format(device.type)
|
|
elif is_intel_xpu():
|
|
return "{} {}".format(device, torch.xpu.get_device_name(device))
|
|
else:
|
|
return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
|
|
|
|
try:
|
|
logging.info("Device: {}".format(get_torch_device_name(get_torch_device())))
|
|
except:
|
|
logging.warning("Could not pick default device.")
|
|
|
|
|
|
current_loaded_models = []
|
|
|
|
def module_size(module):
|
|
module_mem = 0
|
|
sd = module.state_dict()
|
|
for k in sd:
|
|
t = sd[k]
|
|
module_mem += t.nelement() * t.element_size()
|
|
return module_mem
|
|
|
|
class LoadedModel:
|
|
def __init__(self, model):
|
|
self._set_model(model)
|
|
self.device = model.load_device
|
|
self.real_model = None
|
|
self.currently_used = True
|
|
self.model_finalizer = None
|
|
self._patcher_finalizer = None
|
|
|
|
def _set_model(self, model):
|
|
self._model = weakref.ref(model)
|
|
if model.parent is not None:
|
|
self._parent_model = weakref.ref(model.parent)
|
|
self._patcher_finalizer = weakref.finalize(model, self._switch_parent)
|
|
|
|
def _switch_parent(self):
|
|
model = self._parent_model()
|
|
if model is not None:
|
|
self._set_model(model)
|
|
|
|
@property
|
|
def model(self):
|
|
return self._model()
|
|
|
|
def model_memory(self):
|
|
return self.model.model_size()
|
|
|
|
def model_offloaded_memory(self):
|
|
return self.model.model_size() - self.model.loaded_size()
|
|
|
|
def model_memory_required(self, device):
|
|
if device == self.model.current_loaded_device():
|
|
return self.model_offloaded_memory()
|
|
else:
|
|
return self.model_memory()
|
|
|
|
def model_load(self, lowvram_model_memory=0, force_patch_weights=False):
|
|
self.model.model_patches_to(self.device)
|
|
self.model.model_patches_to(self.model.model_dtype())
|
|
|
|
# if self.model.loaded_size() > 0:
|
|
use_more_vram = lowvram_model_memory
|
|
if use_more_vram == 0:
|
|
use_more_vram = 1e32
|
|
self.model_use_more_vram(use_more_vram, force_patch_weights=force_patch_weights)
|
|
real_model = self.model.model
|
|
|
|
if is_intel_xpu() and not args.disable_ipex_optimize and 'ipex' in globals() and real_model is not None:
|
|
with torch.no_grad():
|
|
real_model = ipex.optimize(real_model.eval(), inplace=True, graph_mode=True, concat_linear=True)
|
|
|
|
self.real_model = weakref.ref(real_model)
|
|
self.model_finalizer = weakref.finalize(real_model, cleanup_models)
|
|
return real_model
|
|
|
|
def should_reload_model(self, force_patch_weights=False):
|
|
if force_patch_weights and self.model.lowvram_patch_counter() > 0:
|
|
return True
|
|
return False
|
|
|
|
def model_unload(self, memory_to_free=None, unpatch_weights=True):
|
|
if memory_to_free is not None:
|
|
if memory_to_free < self.model.loaded_size():
|
|
freed = self.model.partially_unload(self.model.offload_device, memory_to_free)
|
|
if freed >= memory_to_free:
|
|
return False
|
|
self.model.detach(unpatch_weights)
|
|
self.model_finalizer.detach()
|
|
self.model_finalizer = None
|
|
self.real_model = None
|
|
return True
|
|
|
|
def model_use_more_vram(self, extra_memory, force_patch_weights=False):
|
|
return self.model.partially_load(self.device, extra_memory, force_patch_weights=force_patch_weights)
|
|
|
|
def __eq__(self, other):
|
|
return self.model is other.model
|
|
|
|
def __del__(self):
|
|
if self._patcher_finalizer is not None:
|
|
self._patcher_finalizer.detach()
|
|
|
|
def is_dead(self):
|
|
return self.real_model() is not None and self.model is None
|
|
|
|
|
|
def use_more_memory(extra_memory, loaded_models, device):
|
|
for m in loaded_models:
|
|
if m.device == device:
|
|
extra_memory -= m.model_use_more_vram(extra_memory)
|
|
if extra_memory <= 0:
|
|
break
|
|
|
|
def offloaded_memory(loaded_models, device):
|
|
offloaded_mem = 0
|
|
for m in loaded_models:
|
|
if m.device == device:
|
|
offloaded_mem += m.model_offloaded_memory()
|
|
return offloaded_mem
|
|
|
|
WINDOWS = any(platform.win32_ver())
|
|
|
|
EXTRA_RESERVED_VRAM = 400 * 1024 * 1024
|
|
if WINDOWS:
|
|
EXTRA_RESERVED_VRAM = 600 * 1024 * 1024 #Windows is higher because of the shared vram issue
|
|
|
|
if args.reserve_vram is not None:
|
|
EXTRA_RESERVED_VRAM = args.reserve_vram * 1024 * 1024 * 1024
|
|
logging.debug("Reserving {}MB vram for other applications.".format(EXTRA_RESERVED_VRAM / (1024 * 1024)))
|
|
|
|
def extra_reserved_memory():
|
|
return EXTRA_RESERVED_VRAM
|
|
|
|
def minimum_inference_memory():
|
|
return (1024 * 1024 * 1024) * 0.8 + extra_reserved_memory()
|
|
|
|
def free_memory(memory_required, device, keep_loaded=[]):
|
|
cleanup_models_gc()
|
|
unloaded_model = []
|
|
can_unload = []
|
|
unloaded_models = []
|
|
|
|
for i in range(len(current_loaded_models) -1, -1, -1):
|
|
shift_model = current_loaded_models[i]
|
|
if shift_model.device == device:
|
|
if shift_model not in keep_loaded and not shift_model.is_dead():
|
|
can_unload.append((-shift_model.model_offloaded_memory(), sys.getrefcount(shift_model.model), shift_model.model_memory(), i))
|
|
shift_model.currently_used = False
|
|
|
|
for x in sorted(can_unload):
|
|
i = x[-1]
|
|
memory_to_free = None
|
|
if not DISABLE_SMART_MEMORY:
|
|
free_mem = get_free_memory(device)
|
|
if free_mem > memory_required:
|
|
break
|
|
memory_to_free = memory_required - free_mem
|
|
logging.debug(f"Unloading {current_loaded_models[i].model.model.__class__.__name__}")
|
|
if current_loaded_models[i].model_unload(memory_to_free):
|
|
unloaded_model.append(i)
|
|
|
|
for i in sorted(unloaded_model, reverse=True):
|
|
unloaded_models.append(current_loaded_models.pop(i))
|
|
|
|
if len(unloaded_model) > 0:
|
|
soft_empty_cache()
|
|
else:
|
|
if vram_state != VRAMState.HIGH_VRAM:
|
|
mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True)
|
|
if mem_free_torch > mem_free_total * 0.25:
|
|
soft_empty_cache()
|
|
return unloaded_models
|
|
|
|
def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimum_memory_required=None, force_full_load=False):
|
|
cleanup_models_gc()
|
|
global vram_state
|
|
|
|
inference_memory = minimum_inference_memory()
|
|
extra_mem = max(inference_memory, memory_required + extra_reserved_memory())
|
|
if minimum_memory_required is None:
|
|
minimum_memory_required = extra_mem
|
|
else:
|
|
minimum_memory_required = max(inference_memory, minimum_memory_required + extra_reserved_memory())
|
|
|
|
models = set(models)
|
|
|
|
models_to_load = []
|
|
|
|
for x in models:
|
|
loaded_model = LoadedModel(x)
|
|
try:
|
|
loaded_model_index = current_loaded_models.index(loaded_model)
|
|
except:
|
|
loaded_model_index = None
|
|
|
|
if loaded_model_index is not None:
|
|
loaded = current_loaded_models[loaded_model_index]
|
|
loaded.currently_used = True
|
|
models_to_load.append(loaded)
|
|
else:
|
|
if hasattr(x, "model"):
|
|
logging.info(f"Requested to load {x.model.__class__.__name__}")
|
|
models_to_load.append(loaded_model)
|
|
|
|
for loaded_model in models_to_load:
|
|
to_unload = []
|
|
for i in range(len(current_loaded_models)):
|
|
if loaded_model.model.is_clone(current_loaded_models[i].model):
|
|
to_unload = [i] + to_unload
|
|
for i in to_unload:
|
|
current_loaded_models.pop(i).model.detach(unpatch_all=False)
|
|
|
|
total_memory_required = {}
|
|
for loaded_model in models_to_load:
|
|
total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
|
|
|
|
for device in total_memory_required:
|
|
if device != torch.device("cpu"):
|
|
free_memory(total_memory_required[device] * 1.1 + extra_mem, device)
|
|
|
|
for device in total_memory_required:
|
|
if device != torch.device("cpu"):
|
|
free_mem = get_free_memory(device)
|
|
if free_mem < minimum_memory_required:
|
|
models_l = free_memory(minimum_memory_required, device)
|
|
logging.info("{} models unloaded.".format(len(models_l)))
|
|
|
|
for loaded_model in models_to_load:
|
|
model = loaded_model.model
|
|
torch_dev = model.load_device
|
|
if is_device_cpu(torch_dev):
|
|
vram_set_state = VRAMState.DISABLED
|
|
else:
|
|
vram_set_state = vram_state
|
|
lowvram_model_memory = 0
|
|
if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM) and not force_full_load:
|
|
model_size = loaded_model.model_memory_required(torch_dev)
|
|
current_free_mem = get_free_memory(torch_dev)
|
|
lowvram_model_memory = max(64 * (1024 * 1024), (current_free_mem - minimum_memory_required), min(current_free_mem * 0.4, current_free_mem - minimum_inference_memory()))
|
|
if model_size <= lowvram_model_memory: #only switch to lowvram if really necessary
|
|
lowvram_model_memory = 0
|
|
|
|
if vram_set_state == VRAMState.NO_VRAM:
|
|
lowvram_model_memory = 64 * 1024 * 1024
|
|
|
|
cur_loaded_model = loaded_model.model_load(lowvram_model_memory, force_patch_weights=force_patch_weights)
|
|
current_loaded_models.insert(0, loaded_model)
|
|
return
|
|
|
|
def load_model_gpu(model):
|
|
return load_models_gpu([model])
|
|
|
|
def loaded_models(only_currently_used=False):
|
|
output = []
|
|
for m in current_loaded_models:
|
|
if only_currently_used:
|
|
if not m.currently_used:
|
|
continue
|
|
|
|
output.append(m.model)
|
|
return output
|
|
|
|
|
|
def cleanup_models_gc():
|
|
do_gc = False
|
|
for i in range(len(current_loaded_models)):
|
|
cur = current_loaded_models[i]
|
|
if cur.is_dead():
|
|
logging.info("Potential memory leak detected with model {}, doing a full garbage collect, for maximum performance avoid circular references in the model code.".format(cur.real_model().__class__.__name__))
|
|
do_gc = True
|
|
break
|
|
|
|
if do_gc:
|
|
gc.collect()
|
|
soft_empty_cache()
|
|
|
|
for i in range(len(current_loaded_models)):
|
|
cur = current_loaded_models[i]
|
|
if cur.is_dead():
|
|
logging.warning("WARNING, memory leak with model {}. Please make sure it is not being referenced from somewhere.".format(cur.real_model().__class__.__name__))
|
|
|
|
|
|
|
|
def cleanup_models():
|
|
to_delete = []
|
|
for i in range(len(current_loaded_models)):
|
|
if current_loaded_models[i].real_model() is None:
|
|
to_delete = [i] + to_delete
|
|
|
|
for i in to_delete:
|
|
x = current_loaded_models.pop(i)
|
|
del x
|
|
|
|
def dtype_size(dtype):
|
|
dtype_size = 4
|
|
if dtype == torch.float16 or dtype == torch.bfloat16:
|
|
dtype_size = 2
|
|
elif dtype == torch.float32:
|
|
dtype_size = 4
|
|
else:
|
|
try:
|
|
dtype_size = dtype.itemsize
|
|
except: #Old pytorch doesn't have .itemsize
|
|
pass
|
|
return dtype_size
|
|
|
|
def unet_offload_device():
|
|
if vram_state == VRAMState.HIGH_VRAM:
|
|
return get_torch_device()
|
|
else:
|
|
return torch.device("cpu")
|
|
|
|
def unet_inital_load_device(parameters, dtype):
|
|
torch_dev = get_torch_device()
|
|
if vram_state == VRAMState.HIGH_VRAM:
|
|
return torch_dev
|
|
|
|
cpu_dev = torch.device("cpu")
|
|
if DISABLE_SMART_MEMORY:
|
|
return cpu_dev
|
|
|
|
model_size = dtype_size(dtype) * parameters
|
|
|
|
mem_dev = get_free_memory(torch_dev)
|
|
mem_cpu = get_free_memory(cpu_dev)
|
|
if mem_dev > mem_cpu and model_size < mem_dev:
|
|
return torch_dev
|
|
else:
|
|
return cpu_dev
|
|
|
|
def maximum_vram_for_weights(device=None):
|
|
return (get_total_memory(device) * 0.88 - minimum_inference_memory())
|
|
|
|
def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
|
|
if model_params < 0:
|
|
model_params = 1000000000000000000000
|
|
if args.fp32_unet:
|
|
return torch.float32
|
|
if args.fp64_unet:
|
|
return torch.float64
|
|
if args.bf16_unet:
|
|
return torch.bfloat16
|
|
if args.fp16_unet:
|
|
return torch.float16
|
|
if args.fp8_e4m3fn_unet:
|
|
return torch.float8_e4m3fn
|
|
if args.fp8_e5m2_unet:
|
|
return torch.float8_e5m2
|
|
|
|
fp8_dtype = None
|
|
try:
|
|
for dtype in [torch.float8_e4m3fn, torch.float8_e5m2]:
|
|
if dtype in supported_dtypes:
|
|
fp8_dtype = dtype
|
|
break
|
|
except:
|
|
pass
|
|
|
|
if fp8_dtype is not None:
|
|
if supports_fp8_compute(device): #if fp8 compute is supported the casting is most likely not expensive
|
|
return fp8_dtype
|
|
|
|
free_model_memory = maximum_vram_for_weights(device)
|
|
if model_params * 2 > free_model_memory:
|
|
return fp8_dtype
|
|
|
|
for dt in supported_dtypes:
|
|
if dt == torch.float16 and should_use_fp16(device=device, model_params=model_params):
|
|
if torch.float16 in supported_dtypes:
|
|
return torch.float16
|
|
if dt == torch.bfloat16 and should_use_bf16(device, model_params=model_params):
|
|
if torch.bfloat16 in supported_dtypes:
|
|
return torch.bfloat16
|
|
|
|
for dt in supported_dtypes:
|
|
if dt == torch.float16 and should_use_fp16(device=device, model_params=model_params, manual_cast=True):
|
|
if torch.float16 in supported_dtypes:
|
|
return torch.float16
|
|
if dt == torch.bfloat16 and should_use_bf16(device, model_params=model_params, manual_cast=True):
|
|
if torch.bfloat16 in supported_dtypes:
|
|
return torch.bfloat16
|
|
|
|
return torch.float32
|
|
|
|
# None means no manual cast
|
|
def unet_manual_cast(weight_dtype, inference_device, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
|
|
if weight_dtype == torch.float32 or weight_dtype == torch.float64:
|
|
return None
|
|
|
|
fp16_supported = should_use_fp16(inference_device, prioritize_performance=False)
|
|
if fp16_supported and weight_dtype == torch.float16:
|
|
return None
|
|
|
|
bf16_supported = should_use_bf16(inference_device)
|
|
if bf16_supported and weight_dtype == torch.bfloat16:
|
|
return None
|
|
|
|
fp16_supported = should_use_fp16(inference_device, prioritize_performance=True)
|
|
for dt in supported_dtypes:
|
|
if dt == torch.float16 and fp16_supported:
|
|
return torch.float16
|
|
if dt == torch.bfloat16 and bf16_supported:
|
|
return torch.bfloat16
|
|
|
|
return torch.float32
|
|
|
|
def text_encoder_offload_device():
|
|
if args.gpu_only:
|
|
return get_torch_device()
|
|
else:
|
|
return torch.device("cpu")
|
|
|
|
def text_encoder_device():
|
|
if args.gpu_only:
|
|
return get_torch_device()
|
|
elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
|
|
if should_use_fp16(prioritize_performance=False):
|
|
return get_torch_device()
|
|
else:
|
|
return torch.device("cpu")
|
|
else:
|
|
return torch.device("cpu")
|
|
|
|
def text_encoder_initial_device(load_device, offload_device, model_size=0):
|
|
if load_device == offload_device or model_size <= 1024 * 1024 * 1024:
|
|
return offload_device
|
|
|
|
if is_device_mps(load_device):
|
|
return offload_device
|
|
|
|
mem_l = get_free_memory(load_device)
|
|
mem_o = get_free_memory(offload_device)
|
|
if mem_l > (mem_o * 0.5) and model_size * 1.2 < mem_l:
|
|
return load_device
|
|
else:
|
|
return offload_device
|
|
|
|
def text_encoder_dtype(device=None):
|
|
if args.fp8_e4m3fn_text_enc:
|
|
return torch.float8_e4m3fn
|
|
elif args.fp8_e5m2_text_enc:
|
|
return torch.float8_e5m2
|
|
elif args.fp16_text_enc:
|
|
return torch.float16
|
|
elif args.fp32_text_enc:
|
|
return torch.float32
|
|
|
|
if is_device_cpu(device):
|
|
return torch.float16
|
|
|
|
return torch.float16
|
|
|
|
|
|
def intermediate_device():
|
|
if args.gpu_only:
|
|
return get_torch_device()
|
|
else:
|
|
return torch.device("cpu")
|
|
|
|
def vae_device():
|
|
if args.cpu_vae:
|
|
return torch.device("cpu")
|
|
return get_torch_device()
|
|
|
|
def vae_offload_device():
|
|
if args.gpu_only:
|
|
return get_torch_device()
|
|
else:
|
|
return torch.device("cpu")
|
|
|
|
def vae_dtype(device=None, allowed_dtypes=[]):
|
|
global VAE_DTYPES
|
|
if args.fp16_vae:
|
|
return torch.float16
|
|
elif args.bf16_vae:
|
|
return torch.bfloat16
|
|
elif args.fp32_vae:
|
|
return torch.float32
|
|
|
|
for d in allowed_dtypes:
|
|
if d == torch.float16 and should_use_fp16(device, prioritize_performance=False):
|
|
return d
|
|
if d in VAE_DTYPES:
|
|
return d
|
|
|
|
return VAE_DTYPES[0]
|
|
|
|
def get_autocast_device(dev):
|
|
if hasattr(dev, 'type'):
|
|
return dev.type
|
|
return "cuda"
|
|
|
|
def supports_dtype(device, dtype): #TODO
|
|
if dtype == torch.float32:
|
|
return True
|
|
if is_device_cpu(device):
|
|
return False
|
|
if dtype == torch.float16:
|
|
return True
|
|
if dtype == torch.bfloat16:
|
|
return True
|
|
return False
|
|
|
|
def supports_cast(device, dtype): #TODO
|
|
if dtype == torch.float32:
|
|
return True
|
|
if dtype == torch.float16:
|
|
return True
|
|
if directml_enabled: #TODO: test this
|
|
return False
|
|
if dtype == torch.bfloat16:
|
|
return True
|
|
if is_device_mps(device):
|
|
return False
|
|
if dtype == torch.float8_e4m3fn:
|
|
return True
|
|
if dtype == torch.float8_e5m2:
|
|
return True
|
|
return False
|
|
|
|
def pick_weight_dtype(dtype, fallback_dtype, device=None):
|
|
if dtype is None:
|
|
dtype = fallback_dtype
|
|
elif dtype_size(dtype) > dtype_size(fallback_dtype):
|
|
dtype = fallback_dtype
|
|
|
|
if not supports_cast(device, dtype):
|
|
dtype = fallback_dtype
|
|
|
|
return dtype
|
|
|
|
def device_supports_non_blocking(device):
|
|
if is_device_mps(device):
|
|
return False #pytorch bug? mps doesn't support non blocking
|
|
if is_intel_xpu():
|
|
return False
|
|
if args.deterministic: #TODO: figure out why deterministic breaks non blocking from gpu to cpu (previews)
|
|
return False
|
|
if directml_enabled:
|
|
return False
|
|
return True
|
|
|
|
def device_should_use_non_blocking(device):
|
|
if not device_supports_non_blocking(device):
|
|
return False
|
|
return False
|
|
# return True #TODO: figure out why this causes memory issues on Nvidia and possibly others
|
|
|
|
def force_channels_last():
|
|
if args.force_channels_last:
|
|
return True
|
|
|
|
#TODO
|
|
return False
|
|
|
|
def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False):
|
|
if device is None or weight.device == device:
|
|
if not copy:
|
|
if dtype is None or weight.dtype == dtype:
|
|
return weight
|
|
return weight.to(dtype=dtype, copy=copy)
|
|
|
|
r = torch.empty_like(weight, dtype=dtype, device=device)
|
|
r.copy_(weight, non_blocking=non_blocking)
|
|
return r
|
|
|
|
def cast_to_device(tensor, device, dtype, copy=False):
|
|
non_blocking = device_supports_non_blocking(device)
|
|
return cast_to(tensor, dtype=dtype, device=device, non_blocking=non_blocking, copy=copy)
|
|
|
|
|
|
def xformers_enabled():
|
|
global directml_enabled
|
|
global cpu_state
|
|
if cpu_state != CPUState.GPU:
|
|
return False
|
|
if is_intel_xpu():
|
|
return False
|
|
if directml_enabled:
|
|
return False
|
|
return XFORMERS_IS_AVAILABLE
|
|
|
|
|
|
def xformers_enabled_vae():
|
|
enabled = xformers_enabled()
|
|
if not enabled:
|
|
return False
|
|
|
|
return XFORMERS_ENABLED_VAE
|
|
|
|
def pytorch_attention_enabled():
|
|
global ENABLE_PYTORCH_ATTENTION
|
|
return ENABLE_PYTORCH_ATTENTION
|
|
|
|
def pytorch_attention_flash_attention():
|
|
global ENABLE_PYTORCH_ATTENTION
|
|
if ENABLE_PYTORCH_ATTENTION:
|
|
#TODO: more reliable way of checking for flash attention?
|
|
if is_nvidia(): #pytorch flash attention only works on Nvidia
|
|
return True
|
|
if is_intel_xpu():
|
|
return True
|
|
return False
|
|
|
|
def force_upcast_attention_dtype():
|
|
upcast = args.force_upcast_attention
|
|
try:
|
|
macos_version = tuple(int(n) for n in platform.mac_ver()[0].split("."))
|
|
if (14, 5) <= macos_version <= (15, 2): # black image bug on recent versions of macOS
|
|
upcast = True
|
|
except:
|
|
pass
|
|
if upcast:
|
|
return torch.float32
|
|
else:
|
|
return None
|
|
|
|
def get_free_memory(dev=None, torch_free_too=False):
|
|
global directml_enabled
|
|
if dev is None:
|
|
dev = get_torch_device()
|
|
|
|
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
|
|
mem_free_total = psutil.virtual_memory().available
|
|
mem_free_torch = mem_free_total
|
|
else:
|
|
if directml_enabled:
|
|
mem_free_total = 1024 * 1024 * 1024 #TODO
|
|
mem_free_torch = mem_free_total
|
|
elif is_intel_xpu():
|
|
stats = torch.xpu.memory_stats(dev)
|
|
mem_active = stats['active_bytes.all.current']
|
|
mem_reserved = stats['reserved_bytes.all.current']
|
|
mem_free_torch = mem_reserved - mem_active
|
|
mem_free_xpu = torch.xpu.get_device_properties(dev).total_memory - mem_reserved
|
|
mem_free_total = mem_free_xpu + mem_free_torch
|
|
else:
|
|
stats = torch.cuda.memory_stats(dev)
|
|
mem_active = stats['active_bytes.all.current']
|
|
mem_reserved = stats['reserved_bytes.all.current']
|
|
mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
|
|
mem_free_torch = mem_reserved - mem_active
|
|
mem_free_total = mem_free_cuda + mem_free_torch
|
|
|
|
if torch_free_too:
|
|
return (mem_free_total, mem_free_torch)
|
|
else:
|
|
return mem_free_total
|
|
|
|
def cpu_mode():
|
|
global cpu_state
|
|
return cpu_state == CPUState.CPU
|
|
|
|
def mps_mode():
|
|
global cpu_state
|
|
return cpu_state == CPUState.MPS
|
|
|
|
def is_device_type(device, type):
|
|
if hasattr(device, 'type'):
|
|
if (device.type == type):
|
|
return True
|
|
return False
|
|
|
|
def is_device_cpu(device):
|
|
return is_device_type(device, 'cpu')
|
|
|
|
def is_device_mps(device):
|
|
return is_device_type(device, 'mps')
|
|
|
|
def is_device_cuda(device):
|
|
return is_device_type(device, 'cuda')
|
|
|
|
def should_use_fp16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
|
|
global directml_enabled
|
|
|
|
if device is not None:
|
|
if is_device_cpu(device):
|
|
return False
|
|
|
|
if FORCE_FP16:
|
|
return True
|
|
|
|
if device is not None:
|
|
if is_device_mps(device):
|
|
return True
|
|
|
|
if FORCE_FP32:
|
|
return False
|
|
|
|
if directml_enabled:
|
|
return False
|
|
|
|
if mps_mode():
|
|
return True
|
|
|
|
if cpu_mode():
|
|
return False
|
|
|
|
if is_intel_xpu():
|
|
return True
|
|
|
|
if torch.version.hip:
|
|
return True
|
|
|
|
props = torch.cuda.get_device_properties(device)
|
|
if props.major >= 8:
|
|
return True
|
|
|
|
if props.major < 6:
|
|
return False
|
|
|
|
#FP16 is confirmed working on a 1080 (GP104) and on latest pytorch actually seems faster than fp32
|
|
nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050", "p40", "p100", "p6", "p4"]
|
|
for x in nvidia_10_series:
|
|
if x in props.name.lower():
|
|
if WINDOWS or manual_cast:
|
|
return True
|
|
else:
|
|
return False #weird linux behavior where fp32 is faster
|
|
|
|
if manual_cast:
|
|
free_model_memory = maximum_vram_for_weights(device)
|
|
if (not prioritize_performance) or model_params * 4 > free_model_memory:
|
|
return True
|
|
|
|
if props.major < 7:
|
|
return False
|
|
|
|
#FP16 is just broken on these cards
|
|
nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"]
|
|
for x in nvidia_16_series:
|
|
if x in props.name:
|
|
return False
|
|
|
|
return True
|
|
|
|
def should_use_bf16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
|
|
if device is not None:
|
|
if is_device_cpu(device): #TODO ? bf16 works on CPU but is extremely slow
|
|
return False
|
|
|
|
if device is not None:
|
|
if is_device_mps(device):
|
|
return True
|
|
|
|
if FORCE_FP32:
|
|
return False
|
|
|
|
if directml_enabled:
|
|
return False
|
|
|
|
if mps_mode():
|
|
return True
|
|
|
|
if cpu_mode():
|
|
return False
|
|
|
|
if is_intel_xpu():
|
|
return True
|
|
|
|
props = torch.cuda.get_device_properties(device)
|
|
if props.major >= 8:
|
|
return True
|
|
|
|
bf16_works = torch.cuda.is_bf16_supported()
|
|
|
|
if bf16_works or manual_cast:
|
|
free_model_memory = maximum_vram_for_weights(device)
|
|
if (not prioritize_performance) or model_params * 4 > free_model_memory:
|
|
return True
|
|
|
|
return False
|
|
|
|
def supports_fp8_compute(device=None):
|
|
if not is_nvidia():
|
|
return False
|
|
|
|
props = torch.cuda.get_device_properties(device)
|
|
if props.major >= 9:
|
|
return True
|
|
if props.major < 8:
|
|
return False
|
|
if props.minor < 9:
|
|
return False
|
|
|
|
if int(torch_version[0]) < 2 or (int(torch_version[0]) == 2 and int(torch_version[2]) < 3):
|
|
return False
|
|
|
|
if WINDOWS:
|
|
if (int(torch_version[0]) == 2 and int(torch_version[2]) < 4):
|
|
return False
|
|
|
|
return True
|
|
|
|
def soft_empty_cache(force=False):
|
|
global cpu_state
|
|
if cpu_state == CPUState.MPS:
|
|
torch.mps.empty_cache()
|
|
elif is_intel_xpu():
|
|
torch.xpu.empty_cache()
|
|
elif torch.cuda.is_available():
|
|
if force or is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
|
|
torch.cuda.empty_cache()
|
|
torch.cuda.ipc_collect()
|
|
|
|
def unload_all_models():
|
|
free_memory(1e30, get_torch_device())
|
|
|
|
|
|
def resolve_lowvram_weight(weight, model, key): #TODO: remove
|
|
print("WARNING: The comfy.model_management.resolve_lowvram_weight function will be removed soon, please stop using it.")
|
|
return weight
|
|
|
|
#TODO: might be cleaner to put this somewhere else
|
|
import threading
|
|
|
|
class InterruptProcessingException(Exception):
|
|
pass
|
|
|
|
interrupt_processing_mutex = threading.RLock()
|
|
|
|
interrupt_processing = False
|
|
def interrupt_current_processing(value=True):
|
|
global interrupt_processing
|
|
global interrupt_processing_mutex
|
|
with interrupt_processing_mutex:
|
|
interrupt_processing = value
|
|
|
|
def processing_interrupted():
|
|
global interrupt_processing
|
|
global interrupt_processing_mutex
|
|
with interrupt_processing_mutex:
|
|
return interrupt_processing
|
|
|
|
def throw_exception_if_processing_interrupted():
|
|
global interrupt_processing
|
|
global interrupt_processing_mutex
|
|
with interrupt_processing_mutex:
|
|
if interrupt_processing:
|
|
interrupt_processing = False
|
|
raise InterruptProcessingException()
|