mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
dafbe321d2
This change fixes a bug where non-constant values could be passed to the IS_CHANGED function. This would result in workflows taking an extra execution before they acted as if they were cached. The actual change is like 4 characters -- the rest is adding unit tests.
130 lines
3.6 KiB
Python
130 lines
3.6 KiB
Python
import torch
|
|
|
|
class StubImage:
|
|
def __init__(self):
|
|
pass
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"content": (['WHITE', 'BLACK', 'NOISE'],),
|
|
"height": ("INT", {"default": 512, "min": 1, "max": 1024 ** 3, "step": 1}),
|
|
"width": ("INT", {"default": 512, "min": 1, "max": 4096 ** 3, "step": 1}),
|
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 1024 ** 3, "step": 1}),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "stub_image"
|
|
|
|
CATEGORY = "Testing/Stub Nodes"
|
|
|
|
def stub_image(self, content, height, width, batch_size):
|
|
if content == "WHITE":
|
|
return (torch.ones(batch_size, height, width, 3),)
|
|
elif content == "BLACK":
|
|
return (torch.zeros(batch_size, height, width, 3),)
|
|
elif content == "NOISE":
|
|
return (torch.rand(batch_size, height, width, 3),)
|
|
|
|
class StubConstantImage:
|
|
def __init__(self):
|
|
pass
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"value": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
"height": ("INT", {"default": 512, "min": 1, "max": 1024 ** 3, "step": 1}),
|
|
"width": ("INT", {"default": 512, "min": 1, "max": 4096 ** 3, "step": 1}),
|
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 1024 ** 3, "step": 1}),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "stub_constant_image"
|
|
|
|
CATEGORY = "Testing/Stub Nodes"
|
|
|
|
def stub_constant_image(self, value, height, width, batch_size):
|
|
return (torch.ones(batch_size, height, width, 3) * value,)
|
|
|
|
class StubMask:
|
|
def __init__(self):
|
|
pass
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"value": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
"height": ("INT", {"default": 512, "min": 1, "max": 1024 ** 3, "step": 1}),
|
|
"width": ("INT", {"default": 512, "min": 1, "max": 4096 ** 3, "step": 1}),
|
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 1024 ** 3, "step": 1}),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("MASK",)
|
|
FUNCTION = "stub_mask"
|
|
|
|
CATEGORY = "Testing/Stub Nodes"
|
|
|
|
def stub_mask(self, value, height, width, batch_size):
|
|
return (torch.ones(batch_size, height, width) * value,)
|
|
|
|
class StubInt:
|
|
def __init__(self):
|
|
pass
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"value": ("INT", {"default": 0, "min": -0xffffffff, "max": 0xffffffff, "step": 1}),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("INT",)
|
|
FUNCTION = "stub_int"
|
|
|
|
CATEGORY = "Testing/Stub Nodes"
|
|
|
|
def stub_int(self, value):
|
|
return (value,)
|
|
|
|
class StubFloat:
|
|
def __init__(self):
|
|
pass
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"value": ("FLOAT", {"default": 0.0, "min": -1.0e38, "max": 1.0e38, "step": 0.01}),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("FLOAT",)
|
|
FUNCTION = "stub_float"
|
|
|
|
CATEGORY = "Testing/Stub Nodes"
|
|
|
|
def stub_float(self, value):
|
|
return (value,)
|
|
|
|
TEST_STUB_NODE_CLASS_MAPPINGS = {
|
|
"StubImage": StubImage,
|
|
"StubConstantImage": StubConstantImage,
|
|
"StubMask": StubMask,
|
|
"StubInt": StubInt,
|
|
"StubFloat": StubFloat,
|
|
}
|
|
TEST_STUB_NODE_DISPLAY_NAME_MAPPINGS = {
|
|
"StubImage": "Stub Image",
|
|
"StubConstantImage": "Stub Constant Image",
|
|
"StubMask": "Stub Mask",
|
|
"StubInt": "Stub Int",
|
|
"StubFloat": "Stub Float",
|
|
}
|