mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-10 18:05:16 +00:00
5cfe38f41c
* Execution Model Inversion This PR inverts the execution model -- from recursively calling nodes to using a topological sort of the nodes. This change allows for modification of the node graph during execution. This allows for two major advantages: 1. The implementation of lazy evaluation in nodes. For example, if a "Mix Images" node has a mix factor of exactly 0.0, the second image input doesn't even need to be evaluated (and visa-versa if the mix factor is 1.0). 2. Dynamic expansion of nodes. This allows for the creation of dynamic "node groups". Specifically, custom nodes can return subgraphs that replace the original node in the graph. This is an incredibly powerful concept. Using this functionality, it was easy to implement: a. Components (a.k.a. node groups) b. Flow control (i.e. while loops) via tail recursion c. All-in-one nodes that replicate the WebUI functionality d. and more All of those were able to be implemented entirely via custom nodes, so those features are *not* a part of this PR. (There are some front-end changes that should occur before that functionality is made widely available, particularly around variant sockets.) The custom nodes associated with this PR can be found at: https://github.com/BadCafeCode/execution-inversion-demo-comfyui Note that some of them require that variant socket types ("*") be enabled. * Allow `input_info` to be of type `None` * Handle errors (like OOM) more gracefully * Add a command-line argument to enable variants This allows the use of nodes that have sockets of type '*' without applying a patch to the code. * Fix an overly aggressive assertion. This could happen when attempting to evaluate `IS_CHANGED` for a node during the creation of the cache (in order to create the cache key). * Fix Pyright warnings * Add execution model unit tests * Fix issue with unused literals Behavior should now match the master branch with regard to undeclared inputs. Undeclared inputs that are socket connections will be used while undeclared inputs that are literals will be ignored. * Make custom VALIDATE_INPUTS skip normal validation Additionally, if `VALIDATE_INPUTS` takes an argument named `input_types`, that variable will be a dictionary of the socket type of all incoming connections. If that argument exists, normal socket type validation will not occur. This removes the last hurdle for enabling variant types entirely from custom nodes, so I've removed that command-line option. I've added appropriate unit tests for these changes. * Fix example in unit test This wouldn't have caused any issues in the unit test, but it would have bugged the UI if someone copy+pasted it into their own node pack. * Use fstrings instead of '%' formatting syntax * Use custom exception types. * Display an error for dependency cycles Previously, dependency cycles that were created during node expansion would cause the application to quit (due to an uncaught exception). Now, we'll throw a proper error to the UI. We also make an attempt to 'blame' the most relevant node in the UI. * Add docs on when ExecutionBlocker should be used * Remove unused functionality * Rename ExecutionResult.SLEEPING to PENDING * Remove superfluous function parameter * Pass None for uneval inputs instead of default This applies to `VALIDATE_INPUTS`, `check_lazy_status`, and lazy values in evaluation functions. * Add a test for mixed node expansion This test ensures that a node that returns a combination of expanded subgraphs and literal values functions correctly. * Raise exception for bad get_node calls. * Minor refactor of IsChangedCache.get * Refactor `map_node_over_list` function * Fix ui output for duplicated nodes * Add documentation on `check_lazy_status` * Add file for execution model unit tests * Clean up Javascript code as per review * Improve documentation Converted some comments to docstrings as per review * Add a new unit test for mixed lazy results This test validates that when an output list is fed to a lazy node, the node will properly evaluate previous nodes that are needed by any inputs to the lazy node. No code in the execution model has been changed. The test already passes. * Allow kwargs in VALIDATE_INPUTS functions When kwargs are used, validation is skipped for all inputs as if they had been mentioned explicitly. * List cached nodes in `execution_cached` message This was previously just bugged in this PR.
982 lines
38 KiB
Python
982 lines
38 KiB
Python
import sys
|
|
import copy
|
|
import logging
|
|
import threading
|
|
import heapq
|
|
import time
|
|
import traceback
|
|
from enum import Enum
|
|
import inspect
|
|
from typing import List, Literal, NamedTuple, Optional
|
|
|
|
import torch
|
|
import nodes
|
|
|
|
import comfy.model_management
|
|
import comfy.graph_utils
|
|
from comfy.graph import get_input_info, ExecutionList, DynamicPrompt, ExecutionBlocker
|
|
from comfy.graph_utils import is_link, GraphBuilder
|
|
from comfy.caching import HierarchicalCache, LRUCache, CacheKeySetInputSignature, CacheKeySetID
|
|
from comfy.cli_args import args
|
|
|
|
class ExecutionResult(Enum):
|
|
SUCCESS = 0
|
|
FAILURE = 1
|
|
PENDING = 2
|
|
|
|
class DuplicateNodeError(Exception):
|
|
pass
|
|
|
|
class IsChangedCache:
|
|
def __init__(self, dynprompt, outputs_cache):
|
|
self.dynprompt = dynprompt
|
|
self.outputs_cache = outputs_cache
|
|
self.is_changed = {}
|
|
|
|
def get(self, node_id):
|
|
if node_id in self.is_changed:
|
|
return self.is_changed[node_id]
|
|
|
|
node = self.dynprompt.get_node(node_id)
|
|
class_type = node["class_type"]
|
|
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
|
|
if not hasattr(class_def, "IS_CHANGED"):
|
|
self.is_changed[node_id] = False
|
|
return self.is_changed[node_id]
|
|
|
|
if "is_changed" in node:
|
|
self.is_changed[node_id] = node["is_changed"]
|
|
return self.is_changed[node_id]
|
|
|
|
input_data_all, _ = get_input_data(node["inputs"], class_def, node_id, self.outputs_cache)
|
|
try:
|
|
is_changed = map_node_over_list(class_def, input_data_all, "IS_CHANGED")
|
|
node["is_changed"] = [None if isinstance(x, ExecutionBlocker) else x for x in is_changed]
|
|
except:
|
|
node["is_changed"] = float("NaN")
|
|
finally:
|
|
self.is_changed[node_id] = node["is_changed"]
|
|
return self.is_changed[node_id]
|
|
|
|
class CacheSet:
|
|
def __init__(self, lru_size=None):
|
|
if lru_size is None or lru_size == 0:
|
|
self.init_classic_cache()
|
|
else:
|
|
self.init_lru_cache(lru_size)
|
|
self.all = [self.outputs, self.ui, self.objects]
|
|
|
|
# Useful for those with ample RAM/VRAM -- allows experimenting without
|
|
# blowing away the cache every time
|
|
def init_lru_cache(self, cache_size):
|
|
self.outputs = LRUCache(CacheKeySetInputSignature, max_size=cache_size)
|
|
self.ui = LRUCache(CacheKeySetInputSignature, max_size=cache_size)
|
|
self.objects = HierarchicalCache(CacheKeySetID)
|
|
|
|
# Performs like the old cache -- dump data ASAP
|
|
def init_classic_cache(self):
|
|
self.outputs = HierarchicalCache(CacheKeySetInputSignature)
|
|
self.ui = HierarchicalCache(CacheKeySetInputSignature)
|
|
self.objects = HierarchicalCache(CacheKeySetID)
|
|
|
|
def recursive_debug_dump(self):
|
|
result = {
|
|
"outputs": self.outputs.recursive_debug_dump(),
|
|
"ui": self.ui.recursive_debug_dump(),
|
|
}
|
|
return result
|
|
|
|
def get_input_data(inputs, class_def, unique_id, outputs=None, dynprompt=None, extra_data={}):
|
|
valid_inputs = class_def.INPUT_TYPES()
|
|
input_data_all = {}
|
|
missing_keys = {}
|
|
for x in inputs:
|
|
input_data = inputs[x]
|
|
input_type, input_category, input_info = get_input_info(class_def, x)
|
|
def mark_missing():
|
|
missing_keys[x] = True
|
|
input_data_all[x] = (None,)
|
|
if is_link(input_data) and (not input_info or not input_info.get("rawLink", False)):
|
|
input_unique_id = input_data[0]
|
|
output_index = input_data[1]
|
|
if outputs is None:
|
|
mark_missing()
|
|
continue # This might be a lazily-evaluated input
|
|
cached_output = outputs.get(input_unique_id)
|
|
if cached_output is None:
|
|
mark_missing()
|
|
continue
|
|
if output_index >= len(cached_output):
|
|
mark_missing()
|
|
continue
|
|
obj = cached_output[output_index]
|
|
input_data_all[x] = obj
|
|
elif input_category is not None:
|
|
input_data_all[x] = [input_data]
|
|
|
|
if "hidden" in valid_inputs:
|
|
h = valid_inputs["hidden"]
|
|
for x in h:
|
|
if h[x] == "PROMPT":
|
|
input_data_all[x] = [dynprompt.get_original_prompt() if dynprompt is not None else {}]
|
|
if h[x] == "DYNPROMPT":
|
|
input_data_all[x] = [dynprompt]
|
|
if h[x] == "EXTRA_PNGINFO":
|
|
input_data_all[x] = [extra_data.get('extra_pnginfo', None)]
|
|
if h[x] == "UNIQUE_ID":
|
|
input_data_all[x] = [unique_id]
|
|
return input_data_all, missing_keys
|
|
|
|
def map_node_over_list(obj, input_data_all, func, allow_interrupt=False, execution_block_cb=None, pre_execute_cb=None):
|
|
# check if node wants the lists
|
|
input_is_list = getattr(obj, "INPUT_IS_LIST", False)
|
|
|
|
if len(input_data_all) == 0:
|
|
max_len_input = 0
|
|
else:
|
|
max_len_input = max(len(x) for x in input_data_all.values())
|
|
|
|
# get a slice of inputs, repeat last input when list isn't long enough
|
|
def slice_dict(d, i):
|
|
return {k: v[i if len(v) > i else -1] for k, v in d.items()}
|
|
|
|
results = []
|
|
def process_inputs(inputs, index=None):
|
|
if allow_interrupt:
|
|
nodes.before_node_execution()
|
|
execution_block = None
|
|
for k, v in inputs.items():
|
|
if isinstance(v, ExecutionBlocker):
|
|
execution_block = execution_block_cb(v) if execution_block_cb else v
|
|
break
|
|
if execution_block is None:
|
|
if pre_execute_cb is not None and index is not None:
|
|
pre_execute_cb(index)
|
|
results.append(getattr(obj, func)(**inputs))
|
|
else:
|
|
results.append(execution_block)
|
|
|
|
if input_is_list:
|
|
process_inputs(input_data_all, 0)
|
|
elif max_len_input == 0:
|
|
process_inputs({})
|
|
else:
|
|
for i in range(max_len_input):
|
|
input_dict = slice_dict(input_data_all, i)
|
|
process_inputs(input_dict, i)
|
|
return results
|
|
|
|
def merge_result_data(results, obj):
|
|
# check which outputs need concatenating
|
|
output = []
|
|
output_is_list = [False] * len(results[0])
|
|
if hasattr(obj, "OUTPUT_IS_LIST"):
|
|
output_is_list = obj.OUTPUT_IS_LIST
|
|
|
|
# merge node execution results
|
|
for i, is_list in zip(range(len(results[0])), output_is_list):
|
|
if is_list:
|
|
output.append([x for o in results for x in o[i]])
|
|
else:
|
|
output.append([o[i] for o in results])
|
|
return output
|
|
|
|
def get_output_data(obj, input_data_all, execution_block_cb=None, pre_execute_cb=None):
|
|
|
|
results = []
|
|
uis = []
|
|
subgraph_results = []
|
|
return_values = map_node_over_list(obj, input_data_all, obj.FUNCTION, allow_interrupt=True, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb)
|
|
has_subgraph = False
|
|
for i in range(len(return_values)):
|
|
r = return_values[i]
|
|
if isinstance(r, dict):
|
|
if 'ui' in r:
|
|
uis.append(r['ui'])
|
|
if 'expand' in r:
|
|
# Perform an expansion, but do not append results
|
|
has_subgraph = True
|
|
new_graph = r['expand']
|
|
result = r.get("result", None)
|
|
if isinstance(result, ExecutionBlocker):
|
|
result = tuple([result] * len(obj.RETURN_TYPES))
|
|
subgraph_results.append((new_graph, result))
|
|
elif 'result' in r:
|
|
result = r.get("result", None)
|
|
if isinstance(result, ExecutionBlocker):
|
|
result = tuple([result] * len(obj.RETURN_TYPES))
|
|
results.append(result)
|
|
subgraph_results.append((None, result))
|
|
else:
|
|
if isinstance(r, ExecutionBlocker):
|
|
r = tuple([r] * len(obj.RETURN_TYPES))
|
|
results.append(r)
|
|
subgraph_results.append((None, r))
|
|
|
|
if has_subgraph:
|
|
output = subgraph_results
|
|
elif len(results) > 0:
|
|
output = merge_result_data(results, obj)
|
|
else:
|
|
output = []
|
|
ui = dict()
|
|
if len(uis) > 0:
|
|
ui = {k: [y for x in uis for y in x[k]] for k in uis[0].keys()}
|
|
return output, ui, has_subgraph
|
|
|
|
def format_value(x):
|
|
if x is None:
|
|
return None
|
|
elif isinstance(x, (int, float, bool, str)):
|
|
return x
|
|
else:
|
|
return str(x)
|
|
|
|
def execute(server, dynprompt, caches, current_item, extra_data, executed, prompt_id, execution_list, pending_subgraph_results):
|
|
unique_id = current_item
|
|
real_node_id = dynprompt.get_real_node_id(unique_id)
|
|
display_node_id = dynprompt.get_display_node_id(unique_id)
|
|
parent_node_id = dynprompt.get_parent_node_id(unique_id)
|
|
inputs = dynprompt.get_node(unique_id)['inputs']
|
|
class_type = dynprompt.get_node(unique_id)['class_type']
|
|
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
|
|
if caches.outputs.get(unique_id) is not None:
|
|
if server.client_id is not None:
|
|
cached_output = caches.ui.get(unique_id) or {}
|
|
server.send_sync("executed", { "node": unique_id, "display_node": display_node_id, "output": cached_output.get("output",None), "prompt_id": prompt_id }, server.client_id)
|
|
return (ExecutionResult.SUCCESS, None, None)
|
|
|
|
input_data_all = None
|
|
try:
|
|
if unique_id in pending_subgraph_results:
|
|
cached_results = pending_subgraph_results[unique_id]
|
|
resolved_outputs = []
|
|
for is_subgraph, result in cached_results:
|
|
if not is_subgraph:
|
|
resolved_outputs.append(result)
|
|
else:
|
|
resolved_output = []
|
|
for r in result:
|
|
if is_link(r):
|
|
source_node, source_output = r[0], r[1]
|
|
node_output = caches.outputs.get(source_node)[source_output]
|
|
for o in node_output:
|
|
resolved_output.append(o)
|
|
|
|
else:
|
|
resolved_output.append(r)
|
|
resolved_outputs.append(tuple(resolved_output))
|
|
output_data = merge_result_data(resolved_outputs, class_def)
|
|
output_ui = []
|
|
has_subgraph = False
|
|
else:
|
|
input_data_all, missing_keys = get_input_data(inputs, class_def, unique_id, caches.outputs, dynprompt, extra_data)
|
|
if server.client_id is not None:
|
|
server.last_node_id = display_node_id
|
|
server.send_sync("executing", { "node": unique_id, "display_node": display_node_id, "prompt_id": prompt_id }, server.client_id)
|
|
|
|
obj = caches.objects.get(unique_id)
|
|
if obj is None:
|
|
obj = class_def()
|
|
caches.objects.set(unique_id, obj)
|
|
|
|
if hasattr(obj, "check_lazy_status"):
|
|
required_inputs = map_node_over_list(obj, input_data_all, "check_lazy_status", allow_interrupt=True)
|
|
required_inputs = set(sum([r for r in required_inputs if isinstance(r,list)], []))
|
|
required_inputs = [x for x in required_inputs if isinstance(x,str) and (
|
|
x not in input_data_all or x in missing_keys
|
|
)]
|
|
if len(required_inputs) > 0:
|
|
for i in required_inputs:
|
|
execution_list.make_input_strong_link(unique_id, i)
|
|
return (ExecutionResult.PENDING, None, None)
|
|
|
|
def execution_block_cb(block):
|
|
if block.message is not None:
|
|
mes = {
|
|
"prompt_id": prompt_id,
|
|
"node_id": unique_id,
|
|
"node_type": class_type,
|
|
"executed": list(executed),
|
|
|
|
"exception_message": f"Execution Blocked: {block.message}",
|
|
"exception_type": "ExecutionBlocked",
|
|
"traceback": [],
|
|
"current_inputs": [],
|
|
"current_outputs": [],
|
|
}
|
|
server.send_sync("execution_error", mes, server.client_id)
|
|
return ExecutionBlocker(None)
|
|
else:
|
|
return block
|
|
def pre_execute_cb(call_index):
|
|
GraphBuilder.set_default_prefix(unique_id, call_index, 0)
|
|
output_data, output_ui, has_subgraph = get_output_data(obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb)
|
|
if len(output_ui) > 0:
|
|
caches.ui.set(unique_id, {
|
|
"meta": {
|
|
"node_id": unique_id,
|
|
"display_node": display_node_id,
|
|
"parent_node": parent_node_id,
|
|
"real_node_id": real_node_id,
|
|
},
|
|
"output": output_ui
|
|
})
|
|
if server.client_id is not None:
|
|
server.send_sync("executed", { "node": unique_id, "display_node": display_node_id, "output": output_ui, "prompt_id": prompt_id }, server.client_id)
|
|
if has_subgraph:
|
|
cached_outputs = []
|
|
new_node_ids = []
|
|
new_output_ids = []
|
|
new_output_links = []
|
|
for i in range(len(output_data)):
|
|
new_graph, node_outputs = output_data[i]
|
|
if new_graph is None:
|
|
cached_outputs.append((False, node_outputs))
|
|
else:
|
|
# Check for conflicts
|
|
for node_id in new_graph.keys():
|
|
if dynprompt.has_node(node_id):
|
|
raise DuplicateNodeError(f"Attempt to add duplicate node {node_id}. Ensure node ids are unique and deterministic or use graph_utils.GraphBuilder.")
|
|
for node_id, node_info in new_graph.items():
|
|
new_node_ids.append(node_id)
|
|
display_id = node_info.get("override_display_id", unique_id)
|
|
dynprompt.add_ephemeral_node(node_id, node_info, unique_id, display_id)
|
|
# Figure out if the newly created node is an output node
|
|
class_type = node_info["class_type"]
|
|
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
|
|
if hasattr(class_def, 'OUTPUT_NODE') and class_def.OUTPUT_NODE == True:
|
|
new_output_ids.append(node_id)
|
|
for i in range(len(node_outputs)):
|
|
if is_link(node_outputs[i]):
|
|
from_node_id, from_socket = node_outputs[i][0], node_outputs[i][1]
|
|
new_output_links.append((from_node_id, from_socket))
|
|
cached_outputs.append((True, node_outputs))
|
|
new_node_ids = set(new_node_ids)
|
|
for cache in caches.all:
|
|
cache.ensure_subcache_for(unique_id, new_node_ids).clean_unused()
|
|
for node_id in new_output_ids:
|
|
execution_list.add_node(node_id)
|
|
for link in new_output_links:
|
|
execution_list.add_strong_link(link[0], link[1], unique_id)
|
|
pending_subgraph_results[unique_id] = cached_outputs
|
|
return (ExecutionResult.PENDING, None, None)
|
|
caches.outputs.set(unique_id, output_data)
|
|
except comfy.model_management.InterruptProcessingException as iex:
|
|
logging.info("Processing interrupted")
|
|
|
|
# skip formatting inputs/outputs
|
|
error_details = {
|
|
"node_id": real_node_id,
|
|
}
|
|
|
|
return (ExecutionResult.FAILURE, error_details, iex)
|
|
except Exception as ex:
|
|
typ, _, tb = sys.exc_info()
|
|
exception_type = full_type_name(typ)
|
|
input_data_formatted = {}
|
|
if input_data_all is not None:
|
|
input_data_formatted = {}
|
|
for name, inputs in input_data_all.items():
|
|
input_data_formatted[name] = [format_value(x) for x in inputs]
|
|
|
|
logging.error(f"!!! Exception during processing !!! {ex}")
|
|
logging.error(traceback.format_exc())
|
|
|
|
error_details = {
|
|
"node_id": real_node_id,
|
|
"exception_message": str(ex),
|
|
"exception_type": exception_type,
|
|
"traceback": traceback.format_tb(tb),
|
|
"current_inputs": input_data_formatted
|
|
}
|
|
if isinstance(ex, comfy.model_management.OOM_EXCEPTION):
|
|
logging.error("Got an OOM, unloading all loaded models.")
|
|
comfy.model_management.unload_all_models()
|
|
|
|
return (ExecutionResult.FAILURE, error_details, ex)
|
|
|
|
executed.add(unique_id)
|
|
|
|
return (ExecutionResult.SUCCESS, None, None)
|
|
|
|
class PromptExecutor:
|
|
def __init__(self, server, lru_size=None):
|
|
self.lru_size = lru_size
|
|
self.server = server
|
|
self.reset()
|
|
|
|
def reset(self):
|
|
self.caches = CacheSet(self.lru_size)
|
|
self.status_messages = []
|
|
self.success = True
|
|
|
|
def add_message(self, event, data: dict, broadcast: bool):
|
|
data = {
|
|
**data,
|
|
"timestamp": int(time.time() * 1000),
|
|
}
|
|
self.status_messages.append((event, data))
|
|
if self.server.client_id is not None or broadcast:
|
|
self.server.send_sync(event, data, self.server.client_id)
|
|
|
|
def handle_execution_error(self, prompt_id, prompt, current_outputs, executed, error, ex):
|
|
node_id = error["node_id"]
|
|
class_type = prompt[node_id]["class_type"]
|
|
|
|
# First, send back the status to the frontend depending
|
|
# on the exception type
|
|
if isinstance(ex, comfy.model_management.InterruptProcessingException):
|
|
mes = {
|
|
"prompt_id": prompt_id,
|
|
"node_id": node_id,
|
|
"node_type": class_type,
|
|
"executed": list(executed),
|
|
}
|
|
self.add_message("execution_interrupted", mes, broadcast=True)
|
|
else:
|
|
mes = {
|
|
"prompt_id": prompt_id,
|
|
"node_id": node_id,
|
|
"node_type": class_type,
|
|
"executed": list(executed),
|
|
"exception_message": error["exception_message"],
|
|
"exception_type": error["exception_type"],
|
|
"traceback": error["traceback"],
|
|
"current_inputs": error["current_inputs"],
|
|
"current_outputs": list(current_outputs),
|
|
}
|
|
self.add_message("execution_error", mes, broadcast=False)
|
|
|
|
def execute(self, prompt, prompt_id, extra_data={}, execute_outputs=[]):
|
|
nodes.interrupt_processing(False)
|
|
|
|
if "client_id" in extra_data:
|
|
self.server.client_id = extra_data["client_id"]
|
|
else:
|
|
self.server.client_id = None
|
|
|
|
self.status_messages = []
|
|
self.add_message("execution_start", { "prompt_id": prompt_id}, broadcast=False)
|
|
|
|
with torch.inference_mode():
|
|
dynamic_prompt = DynamicPrompt(prompt)
|
|
is_changed_cache = IsChangedCache(dynamic_prompt, self.caches.outputs)
|
|
for cache in self.caches.all:
|
|
cache.set_prompt(dynamic_prompt, prompt.keys(), is_changed_cache)
|
|
cache.clean_unused()
|
|
|
|
cached_nodes = []
|
|
for node_id in prompt:
|
|
if self.caches.outputs.get(node_id) is not None:
|
|
cached_nodes.append(node_id)
|
|
|
|
comfy.model_management.cleanup_models(keep_clone_weights_loaded=True)
|
|
self.add_message("execution_cached",
|
|
{ "nodes": cached_nodes, "prompt_id": prompt_id},
|
|
broadcast=False)
|
|
pending_subgraph_results = {}
|
|
executed = set()
|
|
execution_list = ExecutionList(dynamic_prompt, self.caches.outputs)
|
|
current_outputs = self.caches.outputs.all_node_ids()
|
|
for node_id in list(execute_outputs):
|
|
execution_list.add_node(node_id)
|
|
|
|
while not execution_list.is_empty():
|
|
node_id, error, ex = execution_list.stage_node_execution()
|
|
if error is not None:
|
|
self.handle_execution_error(prompt_id, dynamic_prompt.original_prompt, current_outputs, executed, error, ex)
|
|
break
|
|
|
|
result, error, ex = execute(self.server, dynamic_prompt, self.caches, node_id, extra_data, executed, prompt_id, execution_list, pending_subgraph_results)
|
|
if result == ExecutionResult.FAILURE:
|
|
self.handle_execution_error(prompt_id, dynamic_prompt.original_prompt, current_outputs, executed, error, ex)
|
|
break
|
|
elif result == ExecutionResult.PENDING:
|
|
execution_list.unstage_node_execution()
|
|
else: # result == ExecutionResult.SUCCESS:
|
|
execution_list.complete_node_execution()
|
|
else:
|
|
# Only execute when the while-loop ends without break
|
|
self.add_message("execution_success", { "prompt_id": prompt_id }, broadcast=False)
|
|
|
|
ui_outputs = {}
|
|
meta_outputs = {}
|
|
all_node_ids = self.caches.ui.all_node_ids()
|
|
for node_id in all_node_ids:
|
|
ui_info = self.caches.ui.get(node_id)
|
|
if ui_info is not None:
|
|
ui_outputs[node_id] = ui_info["output"]
|
|
meta_outputs[node_id] = ui_info["meta"]
|
|
self.history_result = {
|
|
"outputs": ui_outputs,
|
|
"meta": meta_outputs,
|
|
}
|
|
self.server.last_node_id = None
|
|
if comfy.model_management.DISABLE_SMART_MEMORY:
|
|
comfy.model_management.unload_all_models()
|
|
|
|
|
|
|
|
def validate_inputs(prompt, item, validated):
|
|
unique_id = item
|
|
if unique_id in validated:
|
|
return validated[unique_id]
|
|
|
|
inputs = prompt[unique_id]['inputs']
|
|
class_type = prompt[unique_id]['class_type']
|
|
obj_class = nodes.NODE_CLASS_MAPPINGS[class_type]
|
|
|
|
class_inputs = obj_class.INPUT_TYPES()
|
|
valid_inputs = set(class_inputs.get('required',{})).union(set(class_inputs.get('optional',{})))
|
|
|
|
errors = []
|
|
valid = True
|
|
|
|
validate_function_inputs = []
|
|
validate_has_kwargs = False
|
|
if hasattr(obj_class, "VALIDATE_INPUTS"):
|
|
argspec = inspect.getfullargspec(obj_class.VALIDATE_INPUTS)
|
|
validate_function_inputs = argspec.args
|
|
validate_has_kwargs = argspec.varkw is not None
|
|
received_types = {}
|
|
|
|
for x in valid_inputs:
|
|
type_input, input_category, extra_info = get_input_info(obj_class, x)
|
|
assert extra_info is not None
|
|
if x not in inputs:
|
|
if input_category == "required":
|
|
error = {
|
|
"type": "required_input_missing",
|
|
"message": "Required input is missing",
|
|
"details": f"{x}",
|
|
"extra_info": {
|
|
"input_name": x
|
|
}
|
|
}
|
|
errors.append(error)
|
|
continue
|
|
|
|
val = inputs[x]
|
|
info = (type_input, extra_info)
|
|
if isinstance(val, list):
|
|
if len(val) != 2:
|
|
error = {
|
|
"type": "bad_linked_input",
|
|
"message": "Bad linked input, must be a length-2 list of [node_id, slot_index]",
|
|
"details": f"{x}",
|
|
"extra_info": {
|
|
"input_name": x,
|
|
"input_config": info,
|
|
"received_value": val
|
|
}
|
|
}
|
|
errors.append(error)
|
|
continue
|
|
|
|
o_id = val[0]
|
|
o_class_type = prompt[o_id]['class_type']
|
|
r = nodes.NODE_CLASS_MAPPINGS[o_class_type].RETURN_TYPES
|
|
received_type = r[val[1]]
|
|
received_types[x] = received_type
|
|
if 'input_types' not in validate_function_inputs and received_type != type_input:
|
|
details = f"{x}, {received_type} != {type_input}"
|
|
error = {
|
|
"type": "return_type_mismatch",
|
|
"message": "Return type mismatch between linked nodes",
|
|
"details": details,
|
|
"extra_info": {
|
|
"input_name": x,
|
|
"input_config": info,
|
|
"received_type": received_type,
|
|
"linked_node": val
|
|
}
|
|
}
|
|
errors.append(error)
|
|
continue
|
|
try:
|
|
r = validate_inputs(prompt, o_id, validated)
|
|
if r[0] is False:
|
|
# `r` will be set in `validated[o_id]` already
|
|
valid = False
|
|
continue
|
|
except Exception as ex:
|
|
typ, _, tb = sys.exc_info()
|
|
valid = False
|
|
exception_type = full_type_name(typ)
|
|
reasons = [{
|
|
"type": "exception_during_inner_validation",
|
|
"message": "Exception when validating inner node",
|
|
"details": str(ex),
|
|
"extra_info": {
|
|
"input_name": x,
|
|
"input_config": info,
|
|
"exception_message": str(ex),
|
|
"exception_type": exception_type,
|
|
"traceback": traceback.format_tb(tb),
|
|
"linked_node": val
|
|
}
|
|
}]
|
|
validated[o_id] = (False, reasons, o_id)
|
|
continue
|
|
else:
|
|
try:
|
|
if type_input == "INT":
|
|
val = int(val)
|
|
inputs[x] = val
|
|
if type_input == "FLOAT":
|
|
val = float(val)
|
|
inputs[x] = val
|
|
if type_input == "STRING":
|
|
val = str(val)
|
|
inputs[x] = val
|
|
if type_input == "BOOLEAN":
|
|
val = bool(val)
|
|
inputs[x] = val
|
|
except Exception as ex:
|
|
error = {
|
|
"type": "invalid_input_type",
|
|
"message": f"Failed to convert an input value to a {type_input} value",
|
|
"details": f"{x}, {val}, {ex}",
|
|
"extra_info": {
|
|
"input_name": x,
|
|
"input_config": info,
|
|
"received_value": val,
|
|
"exception_message": str(ex)
|
|
}
|
|
}
|
|
errors.append(error)
|
|
continue
|
|
|
|
if x not in validate_function_inputs and not validate_has_kwargs:
|
|
if "min" in extra_info and val < extra_info["min"]:
|
|
error = {
|
|
"type": "value_smaller_than_min",
|
|
"message": "Value {} smaller than min of {}".format(val, extra_info["min"]),
|
|
"details": f"{x}",
|
|
"extra_info": {
|
|
"input_name": x,
|
|
"input_config": info,
|
|
"received_value": val,
|
|
}
|
|
}
|
|
errors.append(error)
|
|
continue
|
|
if "max" in extra_info and val > extra_info["max"]:
|
|
error = {
|
|
"type": "value_bigger_than_max",
|
|
"message": "Value {} bigger than max of {}".format(val, extra_info["max"]),
|
|
"details": f"{x}",
|
|
"extra_info": {
|
|
"input_name": x,
|
|
"input_config": info,
|
|
"received_value": val,
|
|
}
|
|
}
|
|
errors.append(error)
|
|
continue
|
|
|
|
if isinstance(type_input, list):
|
|
if val not in type_input:
|
|
input_config = info
|
|
list_info = ""
|
|
|
|
# Don't send back gigantic lists like if they're lots of
|
|
# scanned model filepaths
|
|
if len(type_input) > 20:
|
|
list_info = f"(list of length {len(type_input)})"
|
|
input_config = None
|
|
else:
|
|
list_info = str(type_input)
|
|
|
|
error = {
|
|
"type": "value_not_in_list",
|
|
"message": "Value not in list",
|
|
"details": f"{x}: '{val}' not in {list_info}",
|
|
"extra_info": {
|
|
"input_name": x,
|
|
"input_config": input_config,
|
|
"received_value": val,
|
|
}
|
|
}
|
|
errors.append(error)
|
|
continue
|
|
|
|
if len(validate_function_inputs) > 0 or validate_has_kwargs:
|
|
input_data_all, _ = get_input_data(inputs, obj_class, unique_id)
|
|
input_filtered = {}
|
|
for x in input_data_all:
|
|
if x in validate_function_inputs or validate_has_kwargs:
|
|
input_filtered[x] = input_data_all[x]
|
|
if 'input_types' in validate_function_inputs:
|
|
input_filtered['input_types'] = [received_types]
|
|
|
|
#ret = obj_class.VALIDATE_INPUTS(**input_filtered)
|
|
ret = map_node_over_list(obj_class, input_filtered, "VALIDATE_INPUTS")
|
|
for x in input_filtered:
|
|
for i, r in enumerate(ret):
|
|
if r is not True and not isinstance(r, ExecutionBlocker):
|
|
details = f"{x}"
|
|
if r is not False:
|
|
details += f" - {str(r)}"
|
|
|
|
error = {
|
|
"type": "custom_validation_failed",
|
|
"message": "Custom validation failed for node",
|
|
"details": details,
|
|
"extra_info": {
|
|
"input_name": x,
|
|
}
|
|
}
|
|
errors.append(error)
|
|
continue
|
|
|
|
if len(errors) > 0 or valid is not True:
|
|
ret = (False, errors, unique_id)
|
|
else:
|
|
ret = (True, [], unique_id)
|
|
|
|
validated[unique_id] = ret
|
|
return ret
|
|
|
|
def full_type_name(klass):
|
|
module = klass.__module__
|
|
if module == 'builtins':
|
|
return klass.__qualname__
|
|
return module + '.' + klass.__qualname__
|
|
|
|
def validate_prompt(prompt):
|
|
outputs = set()
|
|
for x in prompt:
|
|
if 'class_type' not in prompt[x]:
|
|
error = {
|
|
"type": "invalid_prompt",
|
|
"message": f"Cannot execute because a node is missing the class_type property.",
|
|
"details": f"Node ID '#{x}'",
|
|
"extra_info": {}
|
|
}
|
|
return (False, error, [], [])
|
|
|
|
class_type = prompt[x]['class_type']
|
|
class_ = nodes.NODE_CLASS_MAPPINGS.get(class_type, None)
|
|
if class_ is None:
|
|
error = {
|
|
"type": "invalid_prompt",
|
|
"message": f"Cannot execute because node {class_type} does not exist.",
|
|
"details": f"Node ID '#{x}'",
|
|
"extra_info": {}
|
|
}
|
|
return (False, error, [], [])
|
|
|
|
if hasattr(class_, 'OUTPUT_NODE') and class_.OUTPUT_NODE is True:
|
|
outputs.add(x)
|
|
|
|
if len(outputs) == 0:
|
|
error = {
|
|
"type": "prompt_no_outputs",
|
|
"message": "Prompt has no outputs",
|
|
"details": "",
|
|
"extra_info": {}
|
|
}
|
|
return (False, error, [], [])
|
|
|
|
good_outputs = set()
|
|
errors = []
|
|
node_errors = {}
|
|
validated = {}
|
|
for o in outputs:
|
|
valid = False
|
|
reasons = []
|
|
try:
|
|
m = validate_inputs(prompt, o, validated)
|
|
valid = m[0]
|
|
reasons = m[1]
|
|
except Exception as ex:
|
|
typ, _, tb = sys.exc_info()
|
|
valid = False
|
|
exception_type = full_type_name(typ)
|
|
reasons = [{
|
|
"type": "exception_during_validation",
|
|
"message": "Exception when validating node",
|
|
"details": str(ex),
|
|
"extra_info": {
|
|
"exception_type": exception_type,
|
|
"traceback": traceback.format_tb(tb)
|
|
}
|
|
}]
|
|
validated[o] = (False, reasons, o)
|
|
|
|
if valid is True:
|
|
good_outputs.add(o)
|
|
else:
|
|
logging.error(f"Failed to validate prompt for output {o}:")
|
|
if len(reasons) > 0:
|
|
logging.error("* (prompt):")
|
|
for reason in reasons:
|
|
logging.error(f" - {reason['message']}: {reason['details']}")
|
|
errors += [(o, reasons)]
|
|
for node_id, result in validated.items():
|
|
valid = result[0]
|
|
reasons = result[1]
|
|
# If a node upstream has errors, the nodes downstream will also
|
|
# be reported as invalid, but there will be no errors attached.
|
|
# So don't return those nodes as having errors in the response.
|
|
if valid is not True and len(reasons) > 0:
|
|
if node_id not in node_errors:
|
|
class_type = prompt[node_id]['class_type']
|
|
node_errors[node_id] = {
|
|
"errors": reasons,
|
|
"dependent_outputs": [],
|
|
"class_type": class_type
|
|
}
|
|
logging.error(f"* {class_type} {node_id}:")
|
|
for reason in reasons:
|
|
logging.error(f" - {reason['message']}: {reason['details']}")
|
|
node_errors[node_id]["dependent_outputs"].append(o)
|
|
logging.error("Output will be ignored")
|
|
|
|
if len(good_outputs) == 0:
|
|
errors_list = []
|
|
for o, errors in errors:
|
|
for error in errors:
|
|
errors_list.append(f"{error['message']}: {error['details']}")
|
|
errors_list = "\n".join(errors_list)
|
|
|
|
error = {
|
|
"type": "prompt_outputs_failed_validation",
|
|
"message": "Prompt outputs failed validation",
|
|
"details": errors_list,
|
|
"extra_info": {}
|
|
}
|
|
|
|
return (False, error, list(good_outputs), node_errors)
|
|
|
|
return (True, None, list(good_outputs), node_errors)
|
|
|
|
MAXIMUM_HISTORY_SIZE = 10000
|
|
|
|
class PromptQueue:
|
|
def __init__(self, server):
|
|
self.server = server
|
|
self.mutex = threading.RLock()
|
|
self.not_empty = threading.Condition(self.mutex)
|
|
self.task_counter = 0
|
|
self.queue = []
|
|
self.currently_running = {}
|
|
self.history = {}
|
|
self.flags = {}
|
|
server.prompt_queue = self
|
|
|
|
def put(self, item):
|
|
with self.mutex:
|
|
heapq.heappush(self.queue, item)
|
|
self.server.queue_updated()
|
|
self.not_empty.notify()
|
|
|
|
def get(self, timeout=None):
|
|
with self.not_empty:
|
|
while len(self.queue) == 0:
|
|
self.not_empty.wait(timeout=timeout)
|
|
if timeout is not None and len(self.queue) == 0:
|
|
return None
|
|
item = heapq.heappop(self.queue)
|
|
i = self.task_counter
|
|
self.currently_running[i] = copy.deepcopy(item)
|
|
self.task_counter += 1
|
|
self.server.queue_updated()
|
|
return (item, i)
|
|
|
|
class ExecutionStatus(NamedTuple):
|
|
status_str: Literal['success', 'error']
|
|
completed: bool
|
|
messages: List[str]
|
|
|
|
def task_done(self, item_id, history_result,
|
|
status: Optional['PromptQueue.ExecutionStatus']):
|
|
with self.mutex:
|
|
prompt = self.currently_running.pop(item_id)
|
|
if len(self.history) > MAXIMUM_HISTORY_SIZE:
|
|
self.history.pop(next(iter(self.history)))
|
|
|
|
status_dict: Optional[dict] = None
|
|
if status is not None:
|
|
status_dict = copy.deepcopy(status._asdict())
|
|
|
|
self.history[prompt[1]] = {
|
|
"prompt": prompt,
|
|
"outputs": {},
|
|
'status': status_dict,
|
|
}
|
|
self.history[prompt[1]].update(history_result)
|
|
self.server.queue_updated()
|
|
|
|
def get_current_queue(self):
|
|
with self.mutex:
|
|
out = []
|
|
for x in self.currently_running.values():
|
|
out += [x]
|
|
return (out, copy.deepcopy(self.queue))
|
|
|
|
def get_tasks_remaining(self):
|
|
with self.mutex:
|
|
return len(self.queue) + len(self.currently_running)
|
|
|
|
def wipe_queue(self):
|
|
with self.mutex:
|
|
self.queue = []
|
|
self.server.queue_updated()
|
|
|
|
def delete_queue_item(self, function):
|
|
with self.mutex:
|
|
for x in range(len(self.queue)):
|
|
if function(self.queue[x]):
|
|
if len(self.queue) == 1:
|
|
self.wipe_queue()
|
|
else:
|
|
self.queue.pop(x)
|
|
heapq.heapify(self.queue)
|
|
self.server.queue_updated()
|
|
return True
|
|
return False
|
|
|
|
def get_history(self, prompt_id=None, max_items=None, offset=-1):
|
|
with self.mutex:
|
|
if prompt_id is None:
|
|
out = {}
|
|
i = 0
|
|
if offset < 0 and max_items is not None:
|
|
offset = len(self.history) - max_items
|
|
for k in self.history:
|
|
if i >= offset:
|
|
out[k] = self.history[k]
|
|
if max_items is not None and len(out) >= max_items:
|
|
break
|
|
i += 1
|
|
return out
|
|
elif prompt_id in self.history:
|
|
return {prompt_id: copy.deepcopy(self.history[prompt_id])}
|
|
else:
|
|
return {}
|
|
|
|
def wipe_history(self):
|
|
with self.mutex:
|
|
self.history = {}
|
|
|
|
def delete_history_item(self, id_to_delete):
|
|
with self.mutex:
|
|
self.history.pop(id_to_delete, None)
|
|
|
|
def set_flag(self, name, data):
|
|
with self.mutex:
|
|
self.flags[name] = data
|
|
self.not_empty.notify()
|
|
|
|
def get_flags(self, reset=True):
|
|
with self.mutex:
|
|
if reset:
|
|
ret = self.flags
|
|
self.flags = {}
|
|
return ret
|
|
else:
|
|
return self.flags.copy()
|