ComfyUI/comfy/sdxl_clip.py
comfyanonymous 656c0b5d90 CLIP code refactor and improvements.
More generic clip model class that can be used on more types of text
encoders.

Don't apply weighting algorithm when weight is 1.0

Don't compute an empty token output when it's not needed.
2023-11-06 14:17:41 -05:00

67 lines
2.9 KiB
Python

from comfy import sd1_clip
import torch
import os
class SDXLClipG(sd1_clip.SDClipModel):
def __init__(self, device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, textmodel_path=None, dtype=None):
if layer == "penultimate":
layer="hidden"
layer_idx=-2
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json")
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, textmodel_path=textmodel_path, dtype=dtype,
special_tokens={"start": 49406, "end": 49407, "pad": 0}, layer_norm_hidden_state=False)
def load_sd(self, sd):
return super().load_sd(sd)
class SDXLClipGTokenizer(sd1_clip.SDTokenizer):
def __init__(self, tokenizer_path=None, embedding_directory=None):
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g')
class SDXLTokenizer:
def __init__(self, embedding_directory=None):
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory)
self.clip_g = SDXLClipGTokenizer(embedding_directory=embedding_directory)
def tokenize_with_weights(self, text:str, return_word_ids=False):
out = {}
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids)
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
return out
def untokenize(self, token_weight_pair):
return self.clip_g.untokenize(token_weight_pair)
class SDXLClipModel(torch.nn.Module):
def __init__(self, device="cpu", dtype=None):
super().__init__()
self.clip_l = sd1_clip.SDClipModel(layer="hidden", layer_idx=11, device=device, dtype=dtype, layer_norm_hidden_state=False)
self.clip_g = SDXLClipG(device=device, dtype=dtype)
def clip_layer(self, layer_idx):
self.clip_l.clip_layer(layer_idx)
self.clip_g.clip_layer(layer_idx)
def reset_clip_layer(self):
self.clip_g.reset_clip_layer()
self.clip_l.reset_clip_layer()
def encode_token_weights(self, token_weight_pairs):
token_weight_pairs_g = token_weight_pairs["g"]
token_weight_pairs_l = token_weight_pairs["l"]
g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g)
l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
return torch.cat([l_out, g_out], dim=-1), g_pooled
def load_sd(self, sd):
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
return self.clip_g.load_sd(sd)
else:
return self.clip_l.load_sd(sd)
class SDXLRefinerClipModel(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None):
super().__init__(device=device, dtype=dtype, clip_name="g", clip_model=SDXLClipG)