ComfyUI/comfy/float.py
2024-08-17 15:20:17 -04:00

52 lines
1.6 KiB
Python

import torch
#Not 100% sure about this
def manual_stochastic_round_to_float8(x, dtype):
if dtype == torch.float8_e4m3fn:
EXPONENT_BITS, MANTISSA_BITS, EXPONENT_BIAS = 4, 3, 7
elif dtype == torch.float8_e5m2:
EXPONENT_BITS, MANTISSA_BITS, EXPONENT_BIAS = 5, 2, 15
else:
raise ValueError("Unsupported dtype")
sign = torch.sign(x)
abs_x = x.abs()
# Combine exponent calculation and clamping
exponent = torch.clamp(
torch.floor(torch.log2(abs_x)).to(torch.int32) + EXPONENT_BIAS,
0, 2**EXPONENT_BITS - 1
)
# Combine mantissa calculation and rounding
mantissa = abs_x / (2.0 ** (exponent - EXPONENT_BIAS)) - 1.0
mantissa_scaled = mantissa * (2**MANTISSA_BITS)
mantissa_floor = mantissa_scaled.floor()
mantissa = torch.where(
torch.rand_like(mantissa_scaled) < (mantissa_scaled - mantissa_floor),
(mantissa_floor + 1) / (2**MANTISSA_BITS),
mantissa_floor / (2**MANTISSA_BITS)
)
# Combine final result calculation
result = sign * (2.0 ** (exponent - EXPONENT_BIAS)) * (1.0 + mantissa)
# Handle zero case
result = torch.where(abs_x == 0, torch.zeros_like(result), result)
return result.to(dtype=dtype)
def stochastic_rounding(value, dtype):
if dtype == torch.float32:
return value.to(dtype=torch.float32)
if dtype == torch.float16:
return value.to(dtype=torch.float16)
if dtype == torch.bfloat16:
return value.to(dtype=torch.bfloat16)
if dtype == torch.float8_e4m3fn or dtype == torch.float8_e5m2:
return manual_stochastic_round_to_float8(value, dtype)
return value.to(dtype=dtype)