ComfyUI/comfy/float.py

61 lines
1.8 KiB
Python

import torch
import math
def calc_mantissa(abs_x, exponent, normal_mask, MANTISSA_BITS, EXPONENT_BIAS):
mantissa_scaled = torch.where(
normal_mask,
(abs_x / (2.0 ** (exponent - EXPONENT_BIAS)) - 1.0) * (2**MANTISSA_BITS),
(abs_x / (2.0 ** (-EXPONENT_BIAS + 1 - MANTISSA_BITS)))
)
mantissa_scaled += torch.rand_like(mantissa_scaled)
return mantissa_scaled.floor() / (2**MANTISSA_BITS)
#Not 100% sure about this
def manual_stochastic_round_to_float8(x, dtype):
if dtype == torch.float8_e4m3fn:
EXPONENT_BITS, MANTISSA_BITS, EXPONENT_BIAS = 4, 3, 7
elif dtype == torch.float8_e5m2:
EXPONENT_BITS, MANTISSA_BITS, EXPONENT_BIAS = 5, 2, 15
else:
raise ValueError("Unsupported dtype")
x = x.half()
sign = torch.sign(x)
abs_x = x.abs()
sign = torch.where(abs_x == 0, 0, sign)
# Combine exponent calculation and clamping
exponent = torch.clamp(
torch.floor(torch.log2(abs_x)) + EXPONENT_BIAS,
0, 2**EXPONENT_BITS - 1
)
# Combine mantissa calculation and rounding
normal_mask = ~(exponent == 0)
abs_x[:] = calc_mantissa(abs_x, exponent, normal_mask, MANTISSA_BITS, EXPONENT_BIAS)
sign *= torch.where(
normal_mask,
(2.0 ** (exponent - EXPONENT_BIAS)) * (1.0 + abs_x),
(2.0 ** (-EXPONENT_BIAS + 1)) * abs_x
)
del abs_x
return sign.to(dtype=dtype)
def stochastic_rounding(value, dtype):
if dtype == torch.float32:
return value.to(dtype=torch.float32)
if dtype == torch.float16:
return value.to(dtype=torch.float16)
if dtype == torch.bfloat16:
return value.to(dtype=torch.bfloat16)
if dtype == torch.float8_e4m3fn or dtype == torch.float8_e5m2:
return manual_stochastic_round_to_float8(value, dtype)
return value.to(dtype=dtype)