mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
fc196aac80
This lets you set it so the latents can use the same seed for the sampling on every image in the batch.
156 lines
4.5 KiB
Python
156 lines
4.5 KiB
Python
import comfy.utils
|
|
import torch
|
|
|
|
def reshape_latent_to(target_shape, latent):
|
|
if latent.shape[1:] != target_shape[1:]:
|
|
latent = comfy.utils.common_upscale(latent, target_shape[3], target_shape[2], "bilinear", "center")
|
|
return comfy.utils.repeat_to_batch_size(latent, target_shape[0])
|
|
|
|
|
|
class LatentAdd:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}}
|
|
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "op"
|
|
|
|
CATEGORY = "latent/advanced"
|
|
|
|
def op(self, samples1, samples2):
|
|
samples_out = samples1.copy()
|
|
|
|
s1 = samples1["samples"]
|
|
s2 = samples2["samples"]
|
|
|
|
s2 = reshape_latent_to(s1.shape, s2)
|
|
samples_out["samples"] = s1 + s2
|
|
return (samples_out,)
|
|
|
|
class LatentSubtract:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}}
|
|
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "op"
|
|
|
|
CATEGORY = "latent/advanced"
|
|
|
|
def op(self, samples1, samples2):
|
|
samples_out = samples1.copy()
|
|
|
|
s1 = samples1["samples"]
|
|
s2 = samples2["samples"]
|
|
|
|
s2 = reshape_latent_to(s1.shape, s2)
|
|
samples_out["samples"] = s1 - s2
|
|
return (samples_out,)
|
|
|
|
class LatentMultiply:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "samples": ("LATENT",),
|
|
"multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
|
|
}}
|
|
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "op"
|
|
|
|
CATEGORY = "latent/advanced"
|
|
|
|
def op(self, samples, multiplier):
|
|
samples_out = samples.copy()
|
|
|
|
s1 = samples["samples"]
|
|
samples_out["samples"] = s1 * multiplier
|
|
return (samples_out,)
|
|
|
|
class LatentInterpolate:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "samples1": ("LATENT",),
|
|
"samples2": ("LATENT",),
|
|
"ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
}}
|
|
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "op"
|
|
|
|
CATEGORY = "latent/advanced"
|
|
|
|
def op(self, samples1, samples2, ratio):
|
|
samples_out = samples1.copy()
|
|
|
|
s1 = samples1["samples"]
|
|
s2 = samples2["samples"]
|
|
|
|
s2 = reshape_latent_to(s1.shape, s2)
|
|
|
|
m1 = torch.linalg.vector_norm(s1, dim=(1))
|
|
m2 = torch.linalg.vector_norm(s2, dim=(1))
|
|
|
|
s1 = torch.nan_to_num(s1 / m1)
|
|
s2 = torch.nan_to_num(s2 / m2)
|
|
|
|
t = (s1 * ratio + s2 * (1.0 - ratio))
|
|
mt = torch.linalg.vector_norm(t, dim=(1))
|
|
st = torch.nan_to_num(t / mt)
|
|
|
|
samples_out["samples"] = st * (m1 * ratio + m2 * (1.0 - ratio))
|
|
return (samples_out,)
|
|
|
|
class LatentBatch:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}}
|
|
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "batch"
|
|
|
|
CATEGORY = "latent/batch"
|
|
|
|
def batch(self, samples1, samples2):
|
|
samples_out = samples1.copy()
|
|
s1 = samples1["samples"]
|
|
s2 = samples2["samples"]
|
|
|
|
if s1.shape[1:] != s2.shape[1:]:
|
|
s2 = comfy.utils.common_upscale(s2, s1.shape[3], s1.shape[2], "bilinear", "center")
|
|
s = torch.cat((s1, s2), dim=0)
|
|
samples_out["samples"] = s
|
|
samples_out["batch_index"] = samples1.get("batch_index", [x for x in range(0, s1.shape[0])]) + samples2.get("batch_index", [x for x in range(0, s2.shape[0])])
|
|
return (samples_out,)
|
|
|
|
class LatentBatchSeedBehavior:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "samples": ("LATENT",),
|
|
"seed_behavior": (["random", "fixed"],),}}
|
|
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "op"
|
|
|
|
CATEGORY = "latent/advanced"
|
|
|
|
def op(self, samples, seed_behavior):
|
|
samples_out = samples.copy()
|
|
latent = samples["samples"]
|
|
if seed_behavior == "random":
|
|
if 'batch_index' in samples_out:
|
|
samples_out.pop('batch_index')
|
|
elif seed_behavior == "fixed":
|
|
batch_number = samples_out.get("batch_index", [0])[0]
|
|
samples_out["batch_index"] = [batch_number] * latent.shape[0]
|
|
|
|
return (samples_out,)
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"LatentAdd": LatentAdd,
|
|
"LatentSubtract": LatentSubtract,
|
|
"LatentMultiply": LatentMultiply,
|
|
"LatentInterpolate": LatentInterpolate,
|
|
"LatentBatch": LatentBatch,
|
|
"LatentBatchSeedBehavior": LatentBatchSeedBehavior,
|
|
}
|