ComfyUI/comfy/clip_vision.py
2023-06-18 21:21:17 -04:00

74 lines
3.2 KiB
Python

from transformers import CLIPVisionModelWithProjection, CLIPVisionConfig, CLIPImageProcessor, modeling_utils
from .utils import load_torch_file, transformers_convert
import os
import torch
import comfy.ops
class ClipVisionModel():
def __init__(self, json_config):
config = CLIPVisionConfig.from_json_file(json_config)
with comfy.ops.use_comfy_ops():
with modeling_utils.no_init_weights():
self.model = CLIPVisionModelWithProjection(config)
self.processor = CLIPImageProcessor(crop_size=224,
do_center_crop=True,
do_convert_rgb=True,
do_normalize=True,
do_resize=True,
image_mean=[ 0.48145466,0.4578275,0.40821073],
image_std=[0.26862954,0.26130258,0.27577711],
resample=3, #bicubic
size=224)
def load_sd(self, sd):
return self.model.load_state_dict(sd, strict=False)
def encode_image(self, image):
img = torch.clip((255. * image[0]), 0, 255).round().int()
inputs = self.processor(images=[img], return_tensors="pt")
outputs = self.model(**inputs)
return outputs
def convert_to_transformers(sd):
sd_k = sd.keys()
if "embedder.model.visual.transformer.resblocks.0.attn.in_proj_weight" in sd_k:
keys_to_replace = {
"embedder.model.visual.class_embedding": "vision_model.embeddings.class_embedding",
"embedder.model.visual.conv1.weight": "vision_model.embeddings.patch_embedding.weight",
"embedder.model.visual.positional_embedding": "vision_model.embeddings.position_embedding.weight",
"embedder.model.visual.ln_post.bias": "vision_model.post_layernorm.bias",
"embedder.model.visual.ln_post.weight": "vision_model.post_layernorm.weight",
"embedder.model.visual.ln_pre.bias": "vision_model.pre_layrnorm.bias",
"embedder.model.visual.ln_pre.weight": "vision_model.pre_layrnorm.weight",
}
for x in keys_to_replace:
if x in sd_k:
sd[keys_to_replace[x]] = sd.pop(x)
if "embedder.model.visual.proj" in sd_k:
sd['visual_projection.weight'] = sd.pop("embedder.model.visual.proj").transpose(0, 1)
sd = transformers_convert(sd, "embedder.model.visual", "vision_model", 32)
return sd
def load_clipvision_from_sd(sd):
sd = convert_to_transformers(sd)
if "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
else:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
clip = ClipVisionModel(json_config)
m, u = clip.load_sd(sd)
u = set(u)
keys = list(sd.keys())
for k in keys:
if k not in u:
t = sd.pop(k)
del t
return clip
def load(ckpt_path):
sd = load_torch_file(ckpt_path)
return load_clipvision_from_sd(sd)