mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
9b93b920be
The created checkpoints contain workflow metadata that can be loaded by dragging them on top of the UI or loading them with the "Load" button. Checkpoints will be saved in fp16 or fp32 depending on the format ComfyUI is using for inference on your hardware. To force fp32 use: --force-fp32 Anything that patches the model weights like merging or loras will be saved. The output directory is currently set to: output/checkpoints but that might change in the future.
1164 lines
45 KiB
Python
1164 lines
45 KiB
Python
import torch
|
|
import contextlib
|
|
import copy
|
|
import inspect
|
|
|
|
from comfy import model_management
|
|
from .ldm.util import instantiate_from_config
|
|
from .ldm.models.autoencoder import AutoencoderKL
|
|
import yaml
|
|
from .cldm import cldm
|
|
from .t2i_adapter import adapter
|
|
|
|
from . import utils
|
|
from . import clip_vision
|
|
from . import gligen
|
|
from . import diffusers_convert
|
|
from . import model_base
|
|
from . import model_detection
|
|
|
|
from . import sd1_clip
|
|
from . import sd2_clip
|
|
from . import sdxl_clip
|
|
|
|
def load_model_weights(model, sd):
|
|
m, u = model.load_state_dict(sd, strict=False)
|
|
m = set(m)
|
|
unexpected_keys = set(u)
|
|
|
|
k = list(sd.keys())
|
|
for x in k:
|
|
if x not in unexpected_keys:
|
|
w = sd.pop(x)
|
|
del w
|
|
if len(m) > 0:
|
|
print("missing", m)
|
|
return model
|
|
|
|
def load_clip_weights(model, sd):
|
|
k = list(sd.keys())
|
|
for x in k:
|
|
if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
|
|
y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
|
|
sd[y] = sd.pop(x)
|
|
|
|
if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd:
|
|
ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids']
|
|
if ids.dtype == torch.float32:
|
|
sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
|
|
|
|
sd = utils.transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
|
|
return load_model_weights(model, sd)
|
|
|
|
LORA_CLIP_MAP = {
|
|
"mlp.fc1": "mlp_fc1",
|
|
"mlp.fc2": "mlp_fc2",
|
|
"self_attn.k_proj": "self_attn_k_proj",
|
|
"self_attn.q_proj": "self_attn_q_proj",
|
|
"self_attn.v_proj": "self_attn_v_proj",
|
|
"self_attn.out_proj": "self_attn_out_proj",
|
|
}
|
|
|
|
LORA_UNET_MAP_ATTENTIONS = {
|
|
"proj_in": "proj_in",
|
|
"proj_out": "proj_out",
|
|
}
|
|
|
|
transformer_lora_blocks = {
|
|
"transformer_blocks.{}.attn1.to_q": "transformer_blocks_{}_attn1_to_q",
|
|
"transformer_blocks.{}.attn1.to_k": "transformer_blocks_{}_attn1_to_k",
|
|
"transformer_blocks.{}.attn1.to_v": "transformer_blocks_{}_attn1_to_v",
|
|
"transformer_blocks.{}.attn1.to_out.0": "transformer_blocks_{}_attn1_to_out_0",
|
|
"transformer_blocks.{}.attn2.to_q": "transformer_blocks_{}_attn2_to_q",
|
|
"transformer_blocks.{}.attn2.to_k": "transformer_blocks_{}_attn2_to_k",
|
|
"transformer_blocks.{}.attn2.to_v": "transformer_blocks_{}_attn2_to_v",
|
|
"transformer_blocks.{}.attn2.to_out.0": "transformer_blocks_{}_attn2_to_out_0",
|
|
"transformer_blocks.{}.ff.net.0.proj": "transformer_blocks_{}_ff_net_0_proj",
|
|
"transformer_blocks.{}.ff.net.2": "transformer_blocks_{}_ff_net_2",
|
|
}
|
|
|
|
for i in range(10):
|
|
for k in transformer_lora_blocks:
|
|
LORA_UNET_MAP_ATTENTIONS[k.format(i)] = transformer_lora_blocks[k].format(i)
|
|
|
|
|
|
LORA_UNET_MAP_RESNET = {
|
|
"in_layers.2": "resnets_{}_conv1",
|
|
"emb_layers.1": "resnets_{}_time_emb_proj",
|
|
"out_layers.3": "resnets_{}_conv2",
|
|
"skip_connection": "resnets_{}_conv_shortcut"
|
|
}
|
|
|
|
def load_lora(path, to_load):
|
|
lora = utils.load_torch_file(path, safe_load=True)
|
|
patch_dict = {}
|
|
loaded_keys = set()
|
|
for x in to_load:
|
|
alpha_name = "{}.alpha".format(x)
|
|
alpha = None
|
|
if alpha_name in lora.keys():
|
|
alpha = lora[alpha_name].item()
|
|
loaded_keys.add(alpha_name)
|
|
|
|
A_name = "{}.lora_up.weight".format(x)
|
|
B_name = "{}.lora_down.weight".format(x)
|
|
mid_name = "{}.lora_mid.weight".format(x)
|
|
|
|
if A_name in lora.keys():
|
|
mid = None
|
|
if mid_name in lora.keys():
|
|
mid = lora[mid_name]
|
|
loaded_keys.add(mid_name)
|
|
patch_dict[to_load[x]] = (lora[A_name], lora[B_name], alpha, mid)
|
|
loaded_keys.add(A_name)
|
|
loaded_keys.add(B_name)
|
|
|
|
|
|
######## loha
|
|
hada_w1_a_name = "{}.hada_w1_a".format(x)
|
|
hada_w1_b_name = "{}.hada_w1_b".format(x)
|
|
hada_w2_a_name = "{}.hada_w2_a".format(x)
|
|
hada_w2_b_name = "{}.hada_w2_b".format(x)
|
|
hada_t1_name = "{}.hada_t1".format(x)
|
|
hada_t2_name = "{}.hada_t2".format(x)
|
|
if hada_w1_a_name in lora.keys():
|
|
hada_t1 = None
|
|
hada_t2 = None
|
|
if hada_t1_name in lora.keys():
|
|
hada_t1 = lora[hada_t1_name]
|
|
hada_t2 = lora[hada_t2_name]
|
|
loaded_keys.add(hada_t1_name)
|
|
loaded_keys.add(hada_t2_name)
|
|
|
|
patch_dict[to_load[x]] = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2)
|
|
loaded_keys.add(hada_w1_a_name)
|
|
loaded_keys.add(hada_w1_b_name)
|
|
loaded_keys.add(hada_w2_a_name)
|
|
loaded_keys.add(hada_w2_b_name)
|
|
|
|
|
|
######## lokr
|
|
lokr_w1_name = "{}.lokr_w1".format(x)
|
|
lokr_w2_name = "{}.lokr_w2".format(x)
|
|
lokr_w1_a_name = "{}.lokr_w1_a".format(x)
|
|
lokr_w1_b_name = "{}.lokr_w1_b".format(x)
|
|
lokr_t2_name = "{}.lokr_t2".format(x)
|
|
lokr_w2_a_name = "{}.lokr_w2_a".format(x)
|
|
lokr_w2_b_name = "{}.lokr_w2_b".format(x)
|
|
|
|
lokr_w1 = None
|
|
if lokr_w1_name in lora.keys():
|
|
lokr_w1 = lora[lokr_w1_name]
|
|
loaded_keys.add(lokr_w1_name)
|
|
|
|
lokr_w2 = None
|
|
if lokr_w2_name in lora.keys():
|
|
lokr_w2 = lora[lokr_w2_name]
|
|
loaded_keys.add(lokr_w2_name)
|
|
|
|
lokr_w1_a = None
|
|
if lokr_w1_a_name in lora.keys():
|
|
lokr_w1_a = lora[lokr_w1_a_name]
|
|
loaded_keys.add(lokr_w1_a_name)
|
|
|
|
lokr_w1_b = None
|
|
if lokr_w1_b_name in lora.keys():
|
|
lokr_w1_b = lora[lokr_w1_b_name]
|
|
loaded_keys.add(lokr_w1_b_name)
|
|
|
|
lokr_w2_a = None
|
|
if lokr_w2_a_name in lora.keys():
|
|
lokr_w2_a = lora[lokr_w2_a_name]
|
|
loaded_keys.add(lokr_w2_a_name)
|
|
|
|
lokr_w2_b = None
|
|
if lokr_w2_b_name in lora.keys():
|
|
lokr_w2_b = lora[lokr_w2_b_name]
|
|
loaded_keys.add(lokr_w2_b_name)
|
|
|
|
lokr_t2 = None
|
|
if lokr_t2_name in lora.keys():
|
|
lokr_t2 = lora[lokr_t2_name]
|
|
loaded_keys.add(lokr_t2_name)
|
|
|
|
if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
|
|
patch_dict[to_load[x]] = (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2)
|
|
|
|
for x in lora.keys():
|
|
if x not in loaded_keys:
|
|
print("lora key not loaded", x)
|
|
return patch_dict
|
|
|
|
def model_lora_keys(model, key_map={}):
|
|
sdk = model.state_dict().keys()
|
|
|
|
counter = 0
|
|
for b in range(12):
|
|
tk = "diffusion_model.input_blocks.{}.1".format(b)
|
|
up_counter = 0
|
|
for c in LORA_UNET_MAP_ATTENTIONS:
|
|
k = "{}.{}.weight".format(tk, c)
|
|
if k in sdk:
|
|
lora_key = "lora_unet_down_blocks_{}_attentions_{}_{}".format(counter // 2, counter % 2, LORA_UNET_MAP_ATTENTIONS[c])
|
|
key_map[lora_key] = k
|
|
up_counter += 1
|
|
if up_counter >= 4:
|
|
counter += 1
|
|
for c in LORA_UNET_MAP_ATTENTIONS:
|
|
k = "diffusion_model.middle_block.1.{}.weight".format(c)
|
|
if k in sdk:
|
|
lora_key = "lora_unet_mid_block_attentions_0_{}".format(LORA_UNET_MAP_ATTENTIONS[c])
|
|
key_map[lora_key] = k
|
|
counter = 3
|
|
for b in range(12):
|
|
tk = "diffusion_model.output_blocks.{}.1".format(b)
|
|
up_counter = 0
|
|
for c in LORA_UNET_MAP_ATTENTIONS:
|
|
k = "{}.{}.weight".format(tk, c)
|
|
if k in sdk:
|
|
lora_key = "lora_unet_up_blocks_{}_attentions_{}_{}".format(counter // 3, counter % 3, LORA_UNET_MAP_ATTENTIONS[c])
|
|
key_map[lora_key] = k
|
|
up_counter += 1
|
|
if up_counter >= 4:
|
|
counter += 1
|
|
counter = 0
|
|
text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
|
|
for b in range(24):
|
|
for c in LORA_CLIP_MAP:
|
|
k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
|
|
if k in sdk:
|
|
lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
|
|
key_map[lora_key] = k
|
|
|
|
|
|
#Locon stuff
|
|
ds_counter = 0
|
|
counter = 0
|
|
for b in range(12):
|
|
tk = "diffusion_model.input_blocks.{}.0".format(b)
|
|
key_in = False
|
|
for c in LORA_UNET_MAP_RESNET:
|
|
k = "{}.{}.weight".format(tk, c)
|
|
if k in sdk:
|
|
lora_key = "lora_unet_down_blocks_{}_{}".format(counter // 2, LORA_UNET_MAP_RESNET[c].format(counter % 2))
|
|
key_map[lora_key] = k
|
|
key_in = True
|
|
for bb in range(3):
|
|
k = "{}.{}.op.weight".format(tk[:-2], bb)
|
|
if k in sdk:
|
|
lora_key = "lora_unet_down_blocks_{}_downsamplers_0_conv".format(ds_counter)
|
|
key_map[lora_key] = k
|
|
ds_counter += 1
|
|
if key_in:
|
|
counter += 1
|
|
|
|
counter = 0
|
|
for b in range(3):
|
|
tk = "diffusion_model.middle_block.{}".format(b)
|
|
key_in = False
|
|
for c in LORA_UNET_MAP_RESNET:
|
|
k = "{}.{}.weight".format(tk, c)
|
|
if k in sdk:
|
|
lora_key = "lora_unet_mid_block_{}".format(LORA_UNET_MAP_RESNET[c].format(counter))
|
|
key_map[lora_key] = k
|
|
key_in = True
|
|
if key_in:
|
|
counter += 1
|
|
|
|
counter = 0
|
|
us_counter = 0
|
|
for b in range(12):
|
|
tk = "diffusion_model.output_blocks.{}.0".format(b)
|
|
key_in = False
|
|
for c in LORA_UNET_MAP_RESNET:
|
|
k = "{}.{}.weight".format(tk, c)
|
|
if k in sdk:
|
|
lora_key = "lora_unet_up_blocks_{}_{}".format(counter // 3, LORA_UNET_MAP_RESNET[c].format(counter % 3))
|
|
key_map[lora_key] = k
|
|
key_in = True
|
|
for bb in range(3):
|
|
k = "{}.{}.conv.weight".format(tk[:-2], bb)
|
|
if k in sdk:
|
|
lora_key = "lora_unet_up_blocks_{}_upsamplers_0_conv".format(us_counter)
|
|
key_map[lora_key] = k
|
|
us_counter += 1
|
|
if key_in:
|
|
counter += 1
|
|
|
|
for k in sdk:
|
|
if k.startswith("diffusion_model.") and k.endswith(".weight"):
|
|
key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
|
|
key_map["lora_unet_{}".format(key_lora)] = k
|
|
|
|
return key_map
|
|
|
|
|
|
class ModelPatcher:
|
|
def __init__(self, model, size=0):
|
|
self.size = size
|
|
self.model = model
|
|
self.patches = []
|
|
self.backup = {}
|
|
self.model_options = {"transformer_options":{}}
|
|
self.model_size()
|
|
|
|
def model_size(self):
|
|
if self.size > 0:
|
|
return self.size
|
|
model_sd = self.model.state_dict()
|
|
size = 0
|
|
for k in model_sd:
|
|
t = model_sd[k]
|
|
size += t.nelement() * t.element_size()
|
|
self.size = size
|
|
self.model_keys = set(model_sd.keys())
|
|
return size
|
|
|
|
def clone(self):
|
|
n = ModelPatcher(self.model, self.size)
|
|
n.patches = self.patches[:]
|
|
n.model_options = copy.deepcopy(self.model_options)
|
|
n.model_keys = self.model_keys
|
|
return n
|
|
|
|
def set_model_sampler_cfg_function(self, sampler_cfg_function):
|
|
if len(inspect.signature(sampler_cfg_function).parameters) == 3:
|
|
self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
|
|
else:
|
|
self.model_options["sampler_cfg_function"] = sampler_cfg_function
|
|
|
|
def set_model_patch(self, patch, name):
|
|
to = self.model_options["transformer_options"]
|
|
if "patches" not in to:
|
|
to["patches"] = {}
|
|
to["patches"][name] = to["patches"].get(name, []) + [patch]
|
|
|
|
def set_model_patch_replace(self, patch, name, block_name, number):
|
|
to = self.model_options["transformer_options"]
|
|
if "patches_replace" not in to:
|
|
to["patches_replace"] = {}
|
|
if name not in to["patches_replace"]:
|
|
to["patches_replace"][name] = {}
|
|
to["patches_replace"][name][(block_name, number)] = patch
|
|
|
|
def set_model_attn1_patch(self, patch):
|
|
self.set_model_patch(patch, "attn1_patch")
|
|
|
|
def set_model_attn2_patch(self, patch):
|
|
self.set_model_patch(patch, "attn2_patch")
|
|
|
|
def set_model_attn1_replace(self, patch, block_name, number):
|
|
self.set_model_patch_replace(patch, "attn1", block_name, number)
|
|
|
|
def set_model_attn2_replace(self, patch, block_name, number):
|
|
self.set_model_patch_replace(patch, "attn2", block_name, number)
|
|
|
|
def set_model_attn1_output_patch(self, patch):
|
|
self.set_model_patch(patch, "attn1_output_patch")
|
|
|
|
def set_model_attn2_output_patch(self, patch):
|
|
self.set_model_patch(patch, "attn2_output_patch")
|
|
|
|
def model_patches_to(self, device):
|
|
to = self.model_options["transformer_options"]
|
|
if "patches" in to:
|
|
patches = to["patches"]
|
|
for name in patches:
|
|
patch_list = patches[name]
|
|
for i in range(len(patch_list)):
|
|
if hasattr(patch_list[i], "to"):
|
|
patch_list[i] = patch_list[i].to(device)
|
|
if "patches_replace" in to:
|
|
patches = to["patches_replace"]
|
|
for name in patches:
|
|
patch_list = patches[name]
|
|
for k in patch_list:
|
|
if hasattr(patch_list[k], "to"):
|
|
patch_list[k] = patch_list[k].to(device)
|
|
|
|
def model_dtype(self):
|
|
return self.model.get_dtype()
|
|
|
|
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
|
|
p = {}
|
|
for k in patches:
|
|
if k in self.model_keys:
|
|
p[k] = patches[k]
|
|
self.patches += [(strength_patch, p, strength_model)]
|
|
return p.keys()
|
|
|
|
def model_state_dict(self, filter_prefix=None):
|
|
sd = self.model.state_dict()
|
|
keys = list(sd.keys())
|
|
if filter_prefix is not None:
|
|
for k in keys:
|
|
if not k.startswith(filter_prefix):
|
|
sd.pop(k)
|
|
return sd
|
|
|
|
def patch_model(self):
|
|
model_sd = self.model_state_dict()
|
|
for p in self.patches:
|
|
for k in p[1]:
|
|
v = p[1][k]
|
|
key = k
|
|
if key not in model_sd:
|
|
print("could not patch. key doesn't exist in model:", k)
|
|
continue
|
|
|
|
weight = model_sd[key]
|
|
if key not in self.backup:
|
|
self.backup[key] = weight.clone()
|
|
|
|
alpha = p[0]
|
|
strength_model = p[2]
|
|
|
|
if strength_model != 1.0:
|
|
weight *= strength_model
|
|
|
|
if len(v) == 1:
|
|
w1 = v[0]
|
|
if w1.shape != weight.shape:
|
|
print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
|
|
else:
|
|
weight += alpha * w1.type(weight.dtype).to(weight.device)
|
|
elif len(v) == 4: #lora/locon
|
|
mat1 = v[0]
|
|
mat2 = v[1]
|
|
if v[2] is not None:
|
|
alpha *= v[2] / mat2.shape[0]
|
|
if v[3] is not None:
|
|
#locon mid weights, hopefully the math is fine because I didn't properly test it
|
|
final_shape = [mat2.shape[1], mat2.shape[0], v[3].shape[2], v[3].shape[3]]
|
|
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1).float(), v[3].transpose(0, 1).flatten(start_dim=1).float()).reshape(final_shape).transpose(0, 1)
|
|
weight += (alpha * torch.mm(mat1.flatten(start_dim=1).float(), mat2.flatten(start_dim=1).float())).reshape(weight.shape).type(weight.dtype).to(weight.device)
|
|
elif len(v) == 8: #lokr
|
|
w1 = v[0]
|
|
w2 = v[1]
|
|
w1_a = v[3]
|
|
w1_b = v[4]
|
|
w2_a = v[5]
|
|
w2_b = v[6]
|
|
t2 = v[7]
|
|
dim = None
|
|
|
|
if w1 is None:
|
|
dim = w1_b.shape[0]
|
|
w1 = torch.mm(w1_a.float(), w1_b.float())
|
|
|
|
if w2 is None:
|
|
dim = w2_b.shape[0]
|
|
if t2 is None:
|
|
w2 = torch.mm(w2_a.float(), w2_b.float())
|
|
else:
|
|
w2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2_b.float(), w2_a.float())
|
|
|
|
if len(w2.shape) == 4:
|
|
w1 = w1.unsqueeze(2).unsqueeze(2)
|
|
if v[2] is not None and dim is not None:
|
|
alpha *= v[2] / dim
|
|
|
|
weight += alpha * torch.kron(w1.float(), w2.float()).reshape(weight.shape).type(weight.dtype).to(weight.device)
|
|
else: #loha
|
|
w1a = v[0]
|
|
w1b = v[1]
|
|
if v[2] is not None:
|
|
alpha *= v[2] / w1b.shape[0]
|
|
w2a = v[3]
|
|
w2b = v[4]
|
|
if v[5] is not None: #cp decomposition
|
|
t1 = v[5]
|
|
t2 = v[6]
|
|
m1 = torch.einsum('i j k l, j r, i p -> p r k l', t1.float(), w1b.float(), w1a.float())
|
|
m2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2b.float(), w2a.float())
|
|
else:
|
|
m1 = torch.mm(w1a.float(), w1b.float())
|
|
m2 = torch.mm(w2a.float(), w2b.float())
|
|
|
|
weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype).to(weight.device)
|
|
return self.model
|
|
def unpatch_model(self):
|
|
model_sd = self.model_state_dict()
|
|
keys = list(self.backup.keys())
|
|
for k in keys:
|
|
model_sd[k][:] = self.backup[k]
|
|
del self.backup[k]
|
|
|
|
self.backup = {}
|
|
|
|
def load_lora_for_models(model, clip, lora_path, strength_model, strength_clip):
|
|
key_map = model_lora_keys(model.model)
|
|
key_map = model_lora_keys(clip.cond_stage_model, key_map)
|
|
loaded = load_lora(lora_path, key_map)
|
|
new_modelpatcher = model.clone()
|
|
k = new_modelpatcher.add_patches(loaded, strength_model)
|
|
new_clip = clip.clone()
|
|
k1 = new_clip.add_patches(loaded, strength_clip)
|
|
k = set(k)
|
|
k1 = set(k1)
|
|
for x in loaded:
|
|
if (x not in k) and (x not in k1):
|
|
print("NOT LOADED", x)
|
|
|
|
return (new_modelpatcher, new_clip)
|
|
|
|
|
|
class CLIP:
|
|
def __init__(self, target=None, embedding_directory=None, no_init=False):
|
|
if no_init:
|
|
return
|
|
params = target.params
|
|
clip = target.clip
|
|
tokenizer = target.tokenizer
|
|
|
|
self.device = model_management.text_encoder_device()
|
|
params["device"] = self.device
|
|
self.cond_stage_model = clip(**(params))
|
|
self.cond_stage_model = self.cond_stage_model.to(self.device)
|
|
|
|
self.tokenizer = tokenizer(embedding_directory=embedding_directory)
|
|
self.patcher = ModelPatcher(self.cond_stage_model)
|
|
self.layer_idx = None
|
|
|
|
def clone(self):
|
|
n = CLIP(no_init=True)
|
|
n.patcher = self.patcher.clone()
|
|
n.cond_stage_model = self.cond_stage_model
|
|
n.tokenizer = self.tokenizer
|
|
n.layer_idx = self.layer_idx
|
|
n.device = self.device
|
|
return n
|
|
|
|
def load_from_state_dict(self, sd):
|
|
self.cond_stage_model.load_sd(sd)
|
|
|
|
def add_patches(self, patches, strength=1.0):
|
|
return self.patcher.add_patches(patches, strength)
|
|
|
|
def clip_layer(self, layer_idx):
|
|
self.layer_idx = layer_idx
|
|
|
|
def tokenize(self, text, return_word_ids=False):
|
|
return self.tokenizer.tokenize_with_weights(text, return_word_ids)
|
|
|
|
def encode_from_tokens(self, tokens, return_pooled=False):
|
|
if self.layer_idx is not None:
|
|
self.cond_stage_model.clip_layer(self.layer_idx)
|
|
try:
|
|
self.patch_model()
|
|
cond, pooled = self.cond_stage_model.encode_token_weights(tokens)
|
|
self.unpatch_model()
|
|
except Exception as e:
|
|
self.unpatch_model()
|
|
raise e
|
|
|
|
cond_out = cond
|
|
if return_pooled:
|
|
return cond_out, pooled
|
|
return cond_out
|
|
|
|
def encode(self, text):
|
|
tokens = self.tokenize(text)
|
|
return self.encode_from_tokens(tokens)
|
|
|
|
def load_sd(self, sd):
|
|
return self.cond_stage_model.load_sd(sd)
|
|
|
|
def get_sd(self):
|
|
return self.cond_stage_model.state_dict()
|
|
|
|
def patch_model(self):
|
|
self.patcher.patch_model()
|
|
|
|
def unpatch_model(self):
|
|
self.patcher.unpatch_model()
|
|
|
|
class VAE:
|
|
def __init__(self, ckpt_path=None, device=None, config=None):
|
|
if config is None:
|
|
#default SD1.x/SD2.x VAE parameters
|
|
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
|
|
self.first_stage_model = AutoencoderKL(ddconfig, {'target': 'torch.nn.Identity'}, 4, monitor="val/rec_loss")
|
|
else:
|
|
self.first_stage_model = AutoencoderKL(**(config['params']))
|
|
self.first_stage_model = self.first_stage_model.eval()
|
|
if ckpt_path is not None:
|
|
sd = utils.load_torch_file(ckpt_path)
|
|
if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
|
|
sd = diffusers_convert.convert_vae_state_dict(sd)
|
|
self.first_stage_model.load_state_dict(sd, strict=False)
|
|
|
|
if device is None:
|
|
device = model_management.get_torch_device()
|
|
self.device = device
|
|
|
|
def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
|
|
steps = samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
|
|
steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
|
steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
|
pbar = utils.ProgressBar(steps)
|
|
|
|
decode_fn = lambda a: (self.first_stage_model.decode(a.to(self.device)) + 1.0)
|
|
output = torch.clamp((
|
|
(utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, pbar = pbar) +
|
|
utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, pbar = pbar) +
|
|
utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, pbar = pbar))
|
|
/ 3.0) / 2.0, min=0.0, max=1.0)
|
|
return output
|
|
|
|
def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
|
|
steps = pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
|
|
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
|
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
|
pbar = utils.ProgressBar(steps)
|
|
|
|
encode_fn = lambda a: self.first_stage_model.encode(2. * a.to(self.device) - 1.).sample()
|
|
samples = utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
|
samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
|
samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
|
samples /= 3.0
|
|
return samples
|
|
|
|
def decode(self, samples_in):
|
|
model_management.unload_model()
|
|
self.first_stage_model = self.first_stage_model.to(self.device)
|
|
try:
|
|
free_memory = model_management.get_free_memory(self.device)
|
|
batch_number = int((free_memory * 0.7) / (2562 * samples_in.shape[2] * samples_in.shape[3] * 64))
|
|
batch_number = max(1, batch_number)
|
|
|
|
pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * 8), round(samples_in.shape[3] * 8)), device="cpu")
|
|
for x in range(0, samples_in.shape[0], batch_number):
|
|
samples = samples_in[x:x+batch_number].to(self.device)
|
|
pixel_samples[x:x+batch_number] = torch.clamp((self.first_stage_model.decode(samples) + 1.0) / 2.0, min=0.0, max=1.0).cpu()
|
|
except model_management.OOM_EXCEPTION as e:
|
|
print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
|
|
pixel_samples = self.decode_tiled_(samples_in)
|
|
|
|
self.first_stage_model = self.first_stage_model.cpu()
|
|
pixel_samples = pixel_samples.cpu().movedim(1,-1)
|
|
return pixel_samples
|
|
|
|
def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16):
|
|
model_management.unload_model()
|
|
self.first_stage_model = self.first_stage_model.to(self.device)
|
|
output = self.decode_tiled_(samples, tile_x, tile_y, overlap)
|
|
self.first_stage_model = self.first_stage_model.cpu()
|
|
return output.movedim(1,-1)
|
|
|
|
def encode(self, pixel_samples):
|
|
model_management.unload_model()
|
|
self.first_stage_model = self.first_stage_model.to(self.device)
|
|
pixel_samples = pixel_samples.movedim(-1,1)
|
|
try:
|
|
free_memory = model_management.get_free_memory(self.device)
|
|
batch_number = int((free_memory * 0.7) / (2078 * pixel_samples.shape[2] * pixel_samples.shape[3])) #NOTE: this constant along with the one in the decode above are estimated from the mem usage for the VAE and could change.
|
|
batch_number = max(1, batch_number)
|
|
samples = torch.empty((pixel_samples.shape[0], 4, round(pixel_samples.shape[2] // 8), round(pixel_samples.shape[3] // 8)), device="cpu")
|
|
for x in range(0, pixel_samples.shape[0], batch_number):
|
|
pixels_in = (2. * pixel_samples[x:x+batch_number] - 1.).to(self.device)
|
|
samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).sample().cpu()
|
|
|
|
except model_management.OOM_EXCEPTION as e:
|
|
print("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
|
|
samples = self.encode_tiled_(pixel_samples)
|
|
|
|
self.first_stage_model = self.first_stage_model.cpu()
|
|
return samples
|
|
|
|
def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
|
|
model_management.unload_model()
|
|
self.first_stage_model = self.first_stage_model.to(self.device)
|
|
pixel_samples = pixel_samples.movedim(-1,1)
|
|
samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap)
|
|
self.first_stage_model = self.first_stage_model.cpu()
|
|
return samples
|
|
|
|
def get_sd(self):
|
|
return self.first_stage_model.state_dict()
|
|
|
|
|
|
def broadcast_image_to(tensor, target_batch_size, batched_number):
|
|
current_batch_size = tensor.shape[0]
|
|
#print(current_batch_size, target_batch_size)
|
|
if current_batch_size == 1:
|
|
return tensor
|
|
|
|
per_batch = target_batch_size // batched_number
|
|
tensor = tensor[:per_batch]
|
|
|
|
if per_batch > tensor.shape[0]:
|
|
tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)
|
|
|
|
current_batch_size = tensor.shape[0]
|
|
if current_batch_size == target_batch_size:
|
|
return tensor
|
|
else:
|
|
return torch.cat([tensor] * batched_number, dim=0)
|
|
|
|
class ControlNet:
|
|
def __init__(self, control_model, global_average_pooling=False, device=None):
|
|
self.control_model = control_model
|
|
self.cond_hint_original = None
|
|
self.cond_hint = None
|
|
self.strength = 1.0
|
|
if device is None:
|
|
device = model_management.get_torch_device()
|
|
self.device = device
|
|
self.previous_controlnet = None
|
|
self.global_average_pooling = global_average_pooling
|
|
|
|
def get_control(self, x_noisy, t, cond, batched_number):
|
|
control_prev = None
|
|
if self.previous_controlnet is not None:
|
|
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
|
|
|
|
output_dtype = x_noisy.dtype
|
|
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
|
|
if self.cond_hint is not None:
|
|
del self.cond_hint
|
|
self.cond_hint = None
|
|
self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
|
|
if x_noisy.shape[0] != self.cond_hint.shape[0]:
|
|
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
|
|
|
|
if self.control_model.dtype == torch.float16:
|
|
precision_scope = torch.autocast
|
|
else:
|
|
precision_scope = contextlib.nullcontext
|
|
|
|
with precision_scope(model_management.get_autocast_device(self.device)):
|
|
self.control_model = model_management.load_if_low_vram(self.control_model)
|
|
context = torch.cat(cond['c_crossattn'], 1)
|
|
y = cond.get('c_adm', None)
|
|
control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=context, y=y)
|
|
self.control_model = model_management.unload_if_low_vram(self.control_model)
|
|
out = {'middle':[], 'output': []}
|
|
autocast_enabled = torch.is_autocast_enabled()
|
|
|
|
for i in range(len(control)):
|
|
if i == (len(control) - 1):
|
|
key = 'middle'
|
|
index = 0
|
|
else:
|
|
key = 'output'
|
|
index = i
|
|
x = control[i]
|
|
if self.global_average_pooling:
|
|
x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])
|
|
|
|
x *= self.strength
|
|
if x.dtype != output_dtype and not autocast_enabled:
|
|
x = x.to(output_dtype)
|
|
|
|
if control_prev is not None and key in control_prev:
|
|
prev = control_prev[key][index]
|
|
if prev is not None:
|
|
x += prev
|
|
out[key].append(x)
|
|
if control_prev is not None and 'input' in control_prev:
|
|
out['input'] = control_prev['input']
|
|
return out
|
|
|
|
def set_cond_hint(self, cond_hint, strength=1.0):
|
|
self.cond_hint_original = cond_hint
|
|
self.strength = strength
|
|
return self
|
|
|
|
def set_previous_controlnet(self, controlnet):
|
|
self.previous_controlnet = controlnet
|
|
return self
|
|
|
|
def cleanup(self):
|
|
if self.previous_controlnet is not None:
|
|
self.previous_controlnet.cleanup()
|
|
if self.cond_hint is not None:
|
|
del self.cond_hint
|
|
self.cond_hint = None
|
|
|
|
def copy(self):
|
|
c = ControlNet(self.control_model, global_average_pooling=self.global_average_pooling)
|
|
c.cond_hint_original = self.cond_hint_original
|
|
c.strength = self.strength
|
|
return c
|
|
|
|
def get_models(self):
|
|
out = []
|
|
if self.previous_controlnet is not None:
|
|
out += self.previous_controlnet.get_models()
|
|
out.append(self.control_model)
|
|
return out
|
|
|
|
def load_controlnet(ckpt_path, model=None):
|
|
controlnet_data = utils.load_torch_file(ckpt_path, safe_load=True)
|
|
pth_key = 'control_model.zero_convs.0.0.weight'
|
|
pth = False
|
|
key = 'zero_convs.0.0.weight'
|
|
if pth_key in controlnet_data:
|
|
pth = True
|
|
key = pth_key
|
|
prefix = "control_model."
|
|
elif key in controlnet_data:
|
|
prefix = ""
|
|
else:
|
|
net = load_t2i_adapter(controlnet_data)
|
|
if net is None:
|
|
print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path)
|
|
return net
|
|
|
|
use_fp16 = model_management.should_use_fp16()
|
|
|
|
controlnet_config = model_detection.model_config_from_unet(controlnet_data, prefix, use_fp16).unet_config
|
|
controlnet_config.pop("out_channels")
|
|
controlnet_config["hint_channels"] = 3
|
|
control_model = cldm.ControlNet(**controlnet_config)
|
|
|
|
if pth:
|
|
if 'difference' in controlnet_data:
|
|
if model is not None:
|
|
m = model.patch_model()
|
|
model_sd = m.state_dict()
|
|
for x in controlnet_data:
|
|
c_m = "control_model."
|
|
if x.startswith(c_m):
|
|
sd_key = "diffusion_model.{}".format(x[len(c_m):])
|
|
if sd_key in model_sd:
|
|
cd = controlnet_data[x]
|
|
cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
|
|
model.unpatch_model()
|
|
else:
|
|
print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
|
|
|
|
class WeightsLoader(torch.nn.Module):
|
|
pass
|
|
w = WeightsLoader()
|
|
w.control_model = control_model
|
|
missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
|
|
else:
|
|
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
|
|
print(missing, unexpected)
|
|
|
|
if use_fp16:
|
|
control_model = control_model.half()
|
|
|
|
global_average_pooling = False
|
|
if ckpt_path.endswith("_shuffle.pth") or ckpt_path.endswith("_shuffle.safetensors") or ckpt_path.endswith("_shuffle_fp16.safetensors"): #TODO: smarter way of enabling global_average_pooling
|
|
global_average_pooling = True
|
|
|
|
control = ControlNet(control_model, global_average_pooling=global_average_pooling)
|
|
return control
|
|
|
|
class T2IAdapter:
|
|
def __init__(self, t2i_model, channels_in, device=None):
|
|
self.t2i_model = t2i_model
|
|
self.channels_in = channels_in
|
|
self.strength = 1.0
|
|
if device is None:
|
|
device = model_management.get_torch_device()
|
|
self.device = device
|
|
self.previous_controlnet = None
|
|
self.control_input = None
|
|
self.cond_hint_original = None
|
|
self.cond_hint = None
|
|
|
|
def get_control(self, x_noisy, t, cond, batched_number):
|
|
control_prev = None
|
|
if self.previous_controlnet is not None:
|
|
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
|
|
|
|
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
|
|
if self.cond_hint is not None:
|
|
del self.cond_hint
|
|
self.control_input = None
|
|
self.cond_hint = None
|
|
self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").float().to(self.device)
|
|
if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
|
|
self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
|
|
if x_noisy.shape[0] != self.cond_hint.shape[0]:
|
|
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
|
|
if self.control_input is None:
|
|
self.t2i_model.to(self.device)
|
|
self.control_input = self.t2i_model(self.cond_hint)
|
|
self.t2i_model.cpu()
|
|
|
|
output_dtype = x_noisy.dtype
|
|
out = {'input':[]}
|
|
|
|
autocast_enabled = torch.is_autocast_enabled()
|
|
for i in range(len(self.control_input)):
|
|
key = 'input'
|
|
x = self.control_input[i] * self.strength
|
|
if x.dtype != output_dtype and not autocast_enabled:
|
|
x = x.to(output_dtype)
|
|
|
|
if control_prev is not None and key in control_prev:
|
|
index = len(control_prev[key]) - i * 3 - 3
|
|
prev = control_prev[key][index]
|
|
if prev is not None:
|
|
x += prev
|
|
out[key].insert(0, None)
|
|
out[key].insert(0, None)
|
|
out[key].insert(0, x)
|
|
|
|
if control_prev is not None and 'input' in control_prev:
|
|
for i in range(len(out['input'])):
|
|
if out['input'][i] is None:
|
|
out['input'][i] = control_prev['input'][i]
|
|
if control_prev is not None and 'middle' in control_prev:
|
|
out['middle'] = control_prev['middle']
|
|
if control_prev is not None and 'output' in control_prev:
|
|
out['output'] = control_prev['output']
|
|
return out
|
|
|
|
def set_cond_hint(self, cond_hint, strength=1.0):
|
|
self.cond_hint_original = cond_hint
|
|
self.strength = strength
|
|
return self
|
|
|
|
def set_previous_controlnet(self, controlnet):
|
|
self.previous_controlnet = controlnet
|
|
return self
|
|
|
|
def copy(self):
|
|
c = T2IAdapter(self.t2i_model, self.channels_in)
|
|
c.cond_hint_original = self.cond_hint_original
|
|
c.strength = self.strength
|
|
return c
|
|
|
|
def cleanup(self):
|
|
if self.previous_controlnet is not None:
|
|
self.previous_controlnet.cleanup()
|
|
if self.cond_hint is not None:
|
|
del self.cond_hint
|
|
self.cond_hint = None
|
|
|
|
def get_models(self):
|
|
out = []
|
|
if self.previous_controlnet is not None:
|
|
out += self.previous_controlnet.get_models()
|
|
return out
|
|
|
|
def load_t2i_adapter(t2i_data):
|
|
keys = t2i_data.keys()
|
|
if 'adapter' in keys:
|
|
t2i_data = t2i_data['adapter']
|
|
keys = t2i_data.keys()
|
|
if "body.0.in_conv.weight" in keys:
|
|
cin = t2i_data['body.0.in_conv.weight'].shape[1]
|
|
model_ad = adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
|
|
elif 'conv_in.weight' in keys:
|
|
cin = t2i_data['conv_in.weight'].shape[1]
|
|
channel = t2i_data['conv_in.weight'].shape[0]
|
|
ksize = t2i_data['body.0.block2.weight'].shape[2]
|
|
use_conv = False
|
|
down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
|
|
if len(down_opts) > 0:
|
|
use_conv = True
|
|
model_ad = adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv)
|
|
else:
|
|
return None
|
|
model_ad.load_state_dict(t2i_data)
|
|
return T2IAdapter(model_ad, cin // 64)
|
|
|
|
|
|
class StyleModel:
|
|
def __init__(self, model, device="cpu"):
|
|
self.model = model
|
|
|
|
def get_cond(self, input):
|
|
return self.model(input.last_hidden_state)
|
|
|
|
|
|
def load_style_model(ckpt_path):
|
|
model_data = utils.load_torch_file(ckpt_path, safe_load=True)
|
|
keys = model_data.keys()
|
|
if "style_embedding" in keys:
|
|
model = adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
|
|
else:
|
|
raise Exception("invalid style model {}".format(ckpt_path))
|
|
model.load_state_dict(model_data)
|
|
return StyleModel(model)
|
|
|
|
|
|
def load_clip(ckpt_paths, embedding_directory=None):
|
|
clip_data = []
|
|
for p in ckpt_paths:
|
|
clip_data.append(utils.load_torch_file(p, safe_load=True))
|
|
|
|
class EmptyClass:
|
|
pass
|
|
|
|
for i in range(len(clip_data)):
|
|
if "transformer.resblocks.0.ln_1.weight" in clip_data[i]:
|
|
clip_data[i] = utils.transformers_convert(clip_data[i], "", "text_model.", 32)
|
|
|
|
clip_target = EmptyClass()
|
|
clip_target.params = {}
|
|
if len(clip_data) == 1:
|
|
if "text_model.encoder.layers.30.mlp.fc1.weight" in clip_data[0]:
|
|
clip_target.clip = sdxl_clip.SDXLRefinerClipModel
|
|
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
|
|
elif "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data[0]:
|
|
clip_target.clip = sd2_clip.SD2ClipModel
|
|
clip_target.tokenizer = sd2_clip.SD2Tokenizer
|
|
else:
|
|
clip_target.clip = sd1_clip.SD1ClipModel
|
|
clip_target.tokenizer = sd1_clip.SD1Tokenizer
|
|
else:
|
|
clip_target.clip = sdxl_clip.SDXLClipModel
|
|
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
|
|
|
|
clip = CLIP(clip_target, embedding_directory=embedding_directory)
|
|
for c in clip_data:
|
|
m, u = clip.load_sd(c)
|
|
if len(m) > 0:
|
|
print("clip missing:", m)
|
|
|
|
if len(u) > 0:
|
|
print("clip unexpected:", u)
|
|
return clip
|
|
|
|
def load_gligen(ckpt_path):
|
|
data = utils.load_torch_file(ckpt_path, safe_load=True)
|
|
model = gligen.load_gligen(data)
|
|
if model_management.should_use_fp16():
|
|
model = model.half()
|
|
return model
|
|
|
|
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
|
|
#TODO: this function is a mess and should be removed eventually
|
|
if config is None:
|
|
with open(config_path, 'r') as stream:
|
|
config = yaml.safe_load(stream)
|
|
model_config_params = config['model']['params']
|
|
clip_config = model_config_params['cond_stage_config']
|
|
scale_factor = model_config_params['scale_factor']
|
|
vae_config = model_config_params['first_stage_config']
|
|
|
|
fp16 = False
|
|
if "unet_config" in model_config_params:
|
|
if "params" in model_config_params["unet_config"]:
|
|
unet_config = model_config_params["unet_config"]["params"]
|
|
if "use_fp16" in unet_config:
|
|
fp16 = unet_config["use_fp16"]
|
|
|
|
noise_aug_config = None
|
|
if "noise_aug_config" in model_config_params:
|
|
noise_aug_config = model_config_params["noise_aug_config"]
|
|
|
|
v_prediction = False
|
|
|
|
if "parameterization" in model_config_params:
|
|
if model_config_params["parameterization"] == "v":
|
|
v_prediction = True
|
|
|
|
clip = None
|
|
vae = None
|
|
|
|
class WeightsLoader(torch.nn.Module):
|
|
pass
|
|
|
|
if state_dict is None:
|
|
state_dict = utils.load_torch_file(ckpt_path)
|
|
|
|
class EmptyClass:
|
|
pass
|
|
|
|
model_config = EmptyClass()
|
|
model_config.unet_config = unet_config
|
|
from . import latent_formats
|
|
model_config.latent_format = latent_formats.SD15(scale_factor=scale_factor)
|
|
|
|
if config['model']["target"].endswith("LatentInpaintDiffusion"):
|
|
model = model_base.SDInpaint(model_config, v_prediction=v_prediction)
|
|
elif config['model']["target"].endswith("ImageEmbeddingConditionedLatentDiffusion"):
|
|
model = model_base.SD21UNCLIP(model_config, noise_aug_config["params"], v_prediction=v_prediction)
|
|
else:
|
|
model = model_base.BaseModel(model_config, v_prediction=v_prediction)
|
|
|
|
if fp16:
|
|
model = model.half()
|
|
|
|
model.load_model_weights(state_dict, "model.diffusion_model.")
|
|
|
|
if output_vae:
|
|
w = WeightsLoader()
|
|
vae = VAE(config=vae_config)
|
|
w.first_stage_model = vae.first_stage_model
|
|
load_model_weights(w, state_dict)
|
|
|
|
if output_clip:
|
|
w = WeightsLoader()
|
|
clip_target = EmptyClass()
|
|
clip_target.params = clip_config.get("params", {})
|
|
if clip_config["target"].endswith("FrozenOpenCLIPEmbedder"):
|
|
clip_target.clip = sd2_clip.SD2ClipModel
|
|
clip_target.tokenizer = sd2_clip.SD2Tokenizer
|
|
elif clip_config["target"].endswith("FrozenCLIPEmbedder"):
|
|
clip_target.clip = sd1_clip.SD1ClipModel
|
|
clip_target.tokenizer = sd1_clip.SD1Tokenizer
|
|
clip = CLIP(clip_target, embedding_directory=embedding_directory)
|
|
w.cond_stage_model = clip.cond_stage_model
|
|
load_clip_weights(w, state_dict)
|
|
|
|
return (ModelPatcher(model), clip, vae)
|
|
|
|
|
|
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None):
|
|
sd = utils.load_torch_file(ckpt_path)
|
|
sd_keys = sd.keys()
|
|
clip = None
|
|
clipvision = None
|
|
vae = None
|
|
model = None
|
|
clip_target = None
|
|
|
|
fp16 = model_management.should_use_fp16()
|
|
|
|
class WeightsLoader(torch.nn.Module):
|
|
pass
|
|
|
|
model_config = model_detection.model_config_from_unet(sd, "model.diffusion_model.", fp16)
|
|
if model_config is None:
|
|
raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
|
|
|
|
if model_config.clip_vision_prefix is not None:
|
|
if output_clipvision:
|
|
clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)
|
|
|
|
model = model_config.get_model(sd)
|
|
model.load_model_weights(sd, "model.diffusion_model.")
|
|
|
|
if output_vae:
|
|
vae = VAE()
|
|
w = WeightsLoader()
|
|
w.first_stage_model = vae.first_stage_model
|
|
load_model_weights(w, sd)
|
|
|
|
if output_clip:
|
|
w = WeightsLoader()
|
|
clip_target = model_config.clip_target()
|
|
clip = CLIP(clip_target, embedding_directory=embedding_directory)
|
|
w.cond_stage_model = clip.cond_stage_model
|
|
sd = model_config.process_clip_state_dict(sd)
|
|
load_model_weights(w, sd)
|
|
|
|
left_over = sd.keys()
|
|
if len(left_over) > 0:
|
|
print("left over keys:", left_over)
|
|
|
|
return (ModelPatcher(model), clip, vae, clipvision)
|
|
|
|
def save_checkpoint(output_path, model, clip, vae, metadata=None):
|
|
try:
|
|
model.patch_model()
|
|
clip.patch_model()
|
|
sd = model.model.state_dict_for_saving(clip.get_sd(), vae.get_sd())
|
|
utils.save_torch_file(sd, output_path, metadata=metadata)
|
|
model.unpatch_model()
|
|
clip.unpatch_model()
|
|
except Exception as e:
|
|
model.unpatch_model()
|
|
clip.unpatch_model()
|
|
raise e
|