mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-04-18 18:33:30 +00:00
57 lines
1.7 KiB
Python
57 lines
1.7 KiB
Python
# from https://github.com/bebebe666/OptimalSteps
|
|
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
def loglinear_interp(t_steps, num_steps):
|
|
"""
|
|
Performs log-linear interpolation of a given array of decreasing numbers.
|
|
"""
|
|
xs = np.linspace(0, 1, len(t_steps))
|
|
ys = np.log(t_steps[::-1])
|
|
|
|
new_xs = np.linspace(0, 1, num_steps)
|
|
new_ys = np.interp(new_xs, xs, ys)
|
|
|
|
interped_ys = np.exp(new_ys)[::-1].copy()
|
|
return interped_ys
|
|
|
|
|
|
NOISE_LEVELS = {"FLUX": [0.9968, 0.9886, 0.9819, 0.975, 0.966, 0.9471, 0.9158, 0.8287, 0.5512, 0.2808, 0.001],
|
|
"Wan":[1.0, 0.997, 0.995, 0.993, 0.991, 0.989, 0.987, 0.985, 0.98, 0.975, 0.973, 0.968, 0.96, 0.946, 0.927, 0.902, 0.864, 0.776, 0.539, 0.208, 0.001],
|
|
}
|
|
|
|
class OptimalStepsScheduler:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required":
|
|
{"model_type": (["FLUX", "Wan"], ),
|
|
"steps": ("INT", {"default": 20, "min": 3, "max": 1000}),
|
|
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
}
|
|
}
|
|
RETURN_TYPES = ("SIGMAS",)
|
|
CATEGORY = "sampling/custom_sampling/schedulers"
|
|
|
|
FUNCTION = "get_sigmas"
|
|
|
|
def get_sigmas(self, model_type, steps, denoise):
|
|
total_steps = steps
|
|
if denoise < 1.0:
|
|
if denoise <= 0.0:
|
|
return (torch.FloatTensor([]),)
|
|
total_steps = round(steps * denoise)
|
|
|
|
sigmas = NOISE_LEVELS[model_type][:]
|
|
if (steps + 1) != len(sigmas):
|
|
sigmas = loglinear_interp(sigmas, steps + 1)
|
|
|
|
sigmas = sigmas[-(total_steps + 1):]
|
|
sigmas[-1] = 0
|
|
return (torch.FloatTensor(sigmas), )
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"OptimalStepsScheduler": OptimalStepsScheduler,
|
|
}
|