mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
275 lines
9.3 KiB
Python
275 lines
9.3 KiB
Python
# original source:
|
|
# https://github.com/AminRezaei0x443/memory-efficient-attention/blob/1bc0d9e6ac5f82ea43a375135c4e1d3896ee1694/memory_efficient_attention/attention_torch.py
|
|
# license:
|
|
# MIT
|
|
# credit:
|
|
# Amin Rezaei (original author)
|
|
# Alex Birch (optimized algorithm for 3D tensors, at the expense of removing bias, masking and callbacks)
|
|
# implementation of:
|
|
# Self-attention Does Not Need O(n2) Memory":
|
|
# https://arxiv.org/abs/2112.05682v2
|
|
|
|
from functools import partial
|
|
import torch
|
|
from torch import Tensor
|
|
from torch.utils.checkpoint import checkpoint
|
|
import math
|
|
import logging
|
|
|
|
try:
|
|
from typing import Optional, NamedTuple, List, Protocol
|
|
except ImportError:
|
|
from typing import Optional, NamedTuple, List
|
|
from typing_extensions import Protocol
|
|
|
|
from torch import Tensor
|
|
from typing import List
|
|
|
|
from comfy import model_management
|
|
|
|
def dynamic_slice(
|
|
x: Tensor,
|
|
starts: List[int],
|
|
sizes: List[int],
|
|
) -> Tensor:
|
|
slicing = [slice(start, start + size) for start, size in zip(starts, sizes)]
|
|
return x[slicing]
|
|
|
|
class AttnChunk(NamedTuple):
|
|
exp_values: Tensor
|
|
exp_weights_sum: Tensor
|
|
max_score: Tensor
|
|
|
|
class SummarizeChunk(Protocol):
|
|
@staticmethod
|
|
def __call__(
|
|
query: Tensor,
|
|
key_t: Tensor,
|
|
value: Tensor,
|
|
) -> AttnChunk: ...
|
|
|
|
class ComputeQueryChunkAttn(Protocol):
|
|
@staticmethod
|
|
def __call__(
|
|
query: Tensor,
|
|
key_t: Tensor,
|
|
value: Tensor,
|
|
) -> Tensor: ...
|
|
|
|
def _summarize_chunk(
|
|
query: Tensor,
|
|
key_t: Tensor,
|
|
value: Tensor,
|
|
scale: float,
|
|
upcast_attention: bool,
|
|
mask,
|
|
) -> AttnChunk:
|
|
if upcast_attention:
|
|
with torch.autocast(enabled=False, device_type = 'cuda'):
|
|
query = query.float()
|
|
key_t = key_t.float()
|
|
attn_weights = torch.baddbmm(
|
|
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
|
|
query,
|
|
key_t,
|
|
alpha=scale,
|
|
beta=0,
|
|
)
|
|
else:
|
|
attn_weights = torch.baddbmm(
|
|
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
|
|
query,
|
|
key_t,
|
|
alpha=scale,
|
|
beta=0,
|
|
)
|
|
max_score, _ = torch.max(attn_weights, -1, keepdim=True)
|
|
max_score = max_score.detach()
|
|
attn_weights -= max_score
|
|
if mask is not None:
|
|
attn_weights += mask
|
|
torch.exp(attn_weights, out=attn_weights)
|
|
exp_weights = attn_weights.to(value.dtype)
|
|
exp_values = torch.bmm(exp_weights, value)
|
|
max_score = max_score.squeeze(-1)
|
|
return AttnChunk(exp_values, exp_weights.sum(dim=-1), max_score)
|
|
|
|
def _query_chunk_attention(
|
|
query: Tensor,
|
|
key_t: Tensor,
|
|
value: Tensor,
|
|
summarize_chunk: SummarizeChunk,
|
|
kv_chunk_size: int,
|
|
mask,
|
|
) -> Tensor:
|
|
batch_x_heads, k_channels_per_head, k_tokens = key_t.shape
|
|
_, _, v_channels_per_head = value.shape
|
|
|
|
def chunk_scanner(chunk_idx: int, mask) -> AttnChunk:
|
|
key_chunk = dynamic_slice(
|
|
key_t,
|
|
(0, 0, chunk_idx),
|
|
(batch_x_heads, k_channels_per_head, kv_chunk_size)
|
|
)
|
|
value_chunk = dynamic_slice(
|
|
value,
|
|
(0, chunk_idx, 0),
|
|
(batch_x_heads, kv_chunk_size, v_channels_per_head)
|
|
)
|
|
if mask is not None:
|
|
mask = mask[:,:,chunk_idx:chunk_idx + kv_chunk_size]
|
|
|
|
return summarize_chunk(query, key_chunk, value_chunk, mask=mask)
|
|
|
|
chunks: List[AttnChunk] = [
|
|
chunk_scanner(chunk, mask) for chunk in torch.arange(0, k_tokens, kv_chunk_size)
|
|
]
|
|
acc_chunk = AttnChunk(*map(torch.stack, zip(*chunks)))
|
|
chunk_values, chunk_weights, chunk_max = acc_chunk
|
|
|
|
global_max, _ = torch.max(chunk_max, 0, keepdim=True)
|
|
max_diffs = torch.exp(chunk_max - global_max)
|
|
chunk_values *= torch.unsqueeze(max_diffs, -1)
|
|
chunk_weights *= max_diffs
|
|
|
|
all_values = chunk_values.sum(dim=0)
|
|
all_weights = torch.unsqueeze(chunk_weights, -1).sum(dim=0)
|
|
return all_values / all_weights
|
|
|
|
# TODO: refactor CrossAttention#get_attention_scores to share code with this
|
|
def _get_attention_scores_no_kv_chunking(
|
|
query: Tensor,
|
|
key_t: Tensor,
|
|
value: Tensor,
|
|
scale: float,
|
|
upcast_attention: bool,
|
|
mask,
|
|
) -> Tensor:
|
|
if upcast_attention:
|
|
with torch.autocast(enabled=False, device_type = 'cuda'):
|
|
query = query.float()
|
|
key_t = key_t.float()
|
|
attn_scores = torch.baddbmm(
|
|
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
|
|
query,
|
|
key_t,
|
|
alpha=scale,
|
|
beta=0,
|
|
)
|
|
else:
|
|
attn_scores = torch.baddbmm(
|
|
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
|
|
query,
|
|
key_t,
|
|
alpha=scale,
|
|
beta=0,
|
|
)
|
|
|
|
if mask is not None:
|
|
attn_scores += mask
|
|
try:
|
|
attn_probs = attn_scores.softmax(dim=-1)
|
|
del attn_scores
|
|
except model_management.OOM_EXCEPTION:
|
|
logging.warning("ran out of memory while running softmax in _get_attention_scores_no_kv_chunking, trying slower in place softmax instead")
|
|
attn_scores -= attn_scores.max(dim=-1, keepdim=True).values
|
|
torch.exp(attn_scores, out=attn_scores)
|
|
summed = torch.sum(attn_scores, dim=-1, keepdim=True)
|
|
attn_scores /= summed
|
|
attn_probs = attn_scores
|
|
|
|
hidden_states_slice = torch.bmm(attn_probs.to(value.dtype), value)
|
|
return hidden_states_slice
|
|
|
|
class ScannedChunk(NamedTuple):
|
|
chunk_idx: int
|
|
attn_chunk: AttnChunk
|
|
|
|
def efficient_dot_product_attention(
|
|
query: Tensor,
|
|
key_t: Tensor,
|
|
value: Tensor,
|
|
query_chunk_size=1024,
|
|
kv_chunk_size: Optional[int] = None,
|
|
kv_chunk_size_min: Optional[int] = None,
|
|
use_checkpoint=True,
|
|
upcast_attention=False,
|
|
mask = None,
|
|
):
|
|
"""Computes efficient dot-product attention given query, transposed key, and value.
|
|
This is efficient version of attention presented in
|
|
https://arxiv.org/abs/2112.05682v2 which comes with O(sqrt(n)) memory requirements.
|
|
Args:
|
|
query: queries for calculating attention with shape of
|
|
`[batch * num_heads, tokens, channels_per_head]`.
|
|
key_t: keys for calculating attention with shape of
|
|
`[batch * num_heads, channels_per_head, tokens]`.
|
|
value: values to be used in attention with shape of
|
|
`[batch * num_heads, tokens, channels_per_head]`.
|
|
query_chunk_size: int: query chunks size
|
|
kv_chunk_size: Optional[int]: key/value chunks size. if None: defaults to sqrt(key_tokens)
|
|
kv_chunk_size_min: Optional[int]: key/value minimum chunk size. only considered when kv_chunk_size is None. changes `sqrt(key_tokens)` into `max(sqrt(key_tokens), kv_chunk_size_min)`, to ensure our chunk sizes don't get too small (smaller chunks = more chunks = less concurrent work done).
|
|
use_checkpoint: bool: whether to use checkpointing (recommended True for training, False for inference)
|
|
Returns:
|
|
Output of shape `[batch * num_heads, query_tokens, channels_per_head]`.
|
|
"""
|
|
batch_x_heads, q_tokens, q_channels_per_head = query.shape
|
|
_, _, k_tokens = key_t.shape
|
|
scale = q_channels_per_head ** -0.5
|
|
|
|
kv_chunk_size = min(kv_chunk_size or int(math.sqrt(k_tokens)), k_tokens)
|
|
if kv_chunk_size_min is not None:
|
|
kv_chunk_size = max(kv_chunk_size, kv_chunk_size_min)
|
|
|
|
if mask is not None and len(mask.shape) == 2:
|
|
mask = mask.unsqueeze(0)
|
|
|
|
def get_query_chunk(chunk_idx: int) -> Tensor:
|
|
return dynamic_slice(
|
|
query,
|
|
(0, chunk_idx, 0),
|
|
(batch_x_heads, min(query_chunk_size, q_tokens), q_channels_per_head)
|
|
)
|
|
|
|
def get_mask_chunk(chunk_idx: int) -> Tensor:
|
|
if mask is None:
|
|
return None
|
|
chunk = min(query_chunk_size, q_tokens)
|
|
return mask[:,chunk_idx:chunk_idx + chunk]
|
|
|
|
summarize_chunk: SummarizeChunk = partial(_summarize_chunk, scale=scale, upcast_attention=upcast_attention)
|
|
summarize_chunk: SummarizeChunk = partial(checkpoint, summarize_chunk) if use_checkpoint else summarize_chunk
|
|
compute_query_chunk_attn: ComputeQueryChunkAttn = partial(
|
|
_get_attention_scores_no_kv_chunking,
|
|
scale=scale,
|
|
upcast_attention=upcast_attention
|
|
) if k_tokens <= kv_chunk_size else (
|
|
# fast-path for when there's just 1 key-value chunk per query chunk (this is just sliced attention btw)
|
|
partial(
|
|
_query_chunk_attention,
|
|
kv_chunk_size=kv_chunk_size,
|
|
summarize_chunk=summarize_chunk,
|
|
)
|
|
)
|
|
|
|
if q_tokens <= query_chunk_size:
|
|
# fast-path for when there's just 1 query chunk
|
|
return compute_query_chunk_attn(
|
|
query=query,
|
|
key_t=key_t,
|
|
value=value,
|
|
mask=mask,
|
|
)
|
|
|
|
# TODO: maybe we should use torch.empty_like(query) to allocate storage in-advance,
|
|
# and pass slices to be mutated, instead of torch.cat()ing the returned slices
|
|
res = torch.cat([
|
|
compute_query_chunk_attn(
|
|
query=get_query_chunk(i * query_chunk_size),
|
|
key_t=key_t,
|
|
value=value,
|
|
mask=get_mask_chunk(i * query_chunk_size)
|
|
) for i in range(math.ceil(q_tokens / query_chunk_size))
|
|
], dim=1)
|
|
return res
|