ComfyUI/comfy/ops.py
comfyanonymous d6e4b342e6 Support for Control Loras.
Control loras are controlnets where some of the weights are stored in
"lora" format: an up and a down low rank matrice that when multiplied
together and added to the unet weight give the controlnet weight.

This allows a much smaller memory footprint depending on the rank of the
matrices.

These controlnets are used just like regular ones.
2023-08-18 11:59:51 -04:00

38 lines
1.2 KiB
Python

import torch
from contextlib import contextmanager
class Linear(torch.nn.Module):
def __init__(self, in_features: int, out_features: int, bias: bool = True,
device=None, dtype=None) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = torch.nn.Parameter(torch.empty((out_features, in_features), **factory_kwargs))
if bias:
self.bias = torch.nn.Parameter(torch.empty(out_features, **factory_kwargs))
else:
self.register_parameter('bias', None)
def forward(self, input):
return torch.nn.functional.linear(input, self.weight, self.bias)
class Conv2d(torch.nn.Conv2d):
def reset_parameters(self):
return None
def conv_nd(dims, *args, **kwargs):
if dims == 2:
return Conv2d(*args, **kwargs)
else:
raise ValueError(f"unsupported dimensions: {dims}")
@contextmanager
def use_comfy_ops(): # Kind of an ugly hack but I can't think of a better way
old_torch_nn_linear = torch.nn.Linear
torch.nn.Linear = Linear
try:
yield
finally:
torch.nn.Linear = old_torch_nn_linear