ComfyUI/comfy_extras/nodes_model_advanced.py
comfyanonymous dcec1047e6 Invert the start and end percentages in the code.
This doesn't affect how percentages behave in the frontend but breaks
things if you relied on them in the backend.

percent_to_sigma goes from 0 to 1.0 instead of 1.0 to 0 for less confusion.

Make percent 0 return an extremely large sigma and percent 1.0 return a
zero one to fix imprecision.
2023-11-16 04:23:44 -05:00

174 lines
6.0 KiB
Python

import folder_paths
import comfy.sd
import comfy.model_sampling
import torch
class LCM(comfy.model_sampling.EPS):
def calculate_denoised(self, sigma, model_output, model_input):
timestep = self.timestep(sigma).view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
x0 = model_input - model_output * sigma
sigma_data = 0.5
scaled_timestep = timestep * 10.0 #timestep_scaling
c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2)
c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5
return c_out * x0 + c_skip * model_input
class ModelSamplingDiscreteLCM(torch.nn.Module):
def __init__(self):
super().__init__()
self.sigma_data = 1.0
timesteps = 1000
beta_start = 0.00085
beta_end = 0.012
betas = torch.linspace(beta_start**0.5, beta_end**0.5, timesteps, dtype=torch.float32) ** 2
alphas = 1.0 - betas
alphas_cumprod = torch.cumprod(alphas, dim=0)
original_timesteps = 50
self.skip_steps = timesteps // original_timesteps
alphas_cumprod_valid = torch.zeros((original_timesteps), dtype=torch.float32)
for x in range(original_timesteps):
alphas_cumprod_valid[original_timesteps - 1 - x] = alphas_cumprod[timesteps - 1 - x * self.skip_steps]
sigmas = ((1 - alphas_cumprod_valid) / alphas_cumprod_valid) ** 0.5
self.set_sigmas(sigmas)
def set_sigmas(self, sigmas):
self.register_buffer('sigmas', sigmas)
self.register_buffer('log_sigmas', sigmas.log())
@property
def sigma_min(self):
return self.sigmas[0]
@property
def sigma_max(self):
return self.sigmas[-1]
def timestep(self, sigma):
log_sigma = sigma.log()
dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
return dists.abs().argmin(dim=0).view(sigma.shape) * self.skip_steps + (self.skip_steps - 1)
def sigma(self, timestep):
t = torch.clamp(((timestep - (self.skip_steps - 1)) / self.skip_steps).float(), min=0, max=(len(self.sigmas) - 1))
low_idx = t.floor().long()
high_idx = t.ceil().long()
w = t.frac()
log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx]
return log_sigma.exp()
def percent_to_sigma(self, percent):
if percent <= 0.0:
return torch.tensor(999999999.9)
if percent >= 1.0:
return torch.tensor(0.0)
percent = 1.0 - percent
return self.sigma(torch.tensor(percent * 999.0))
def rescale_zero_terminal_snr_sigmas(sigmas):
alphas_cumprod = 1 / ((sigmas * sigmas) + 1)
alphas_bar_sqrt = alphas_cumprod.sqrt()
# Store old values.
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
# Shift so the last timestep is zero.
alphas_bar_sqrt -= (alphas_bar_sqrt_T)
# Scale so the first timestep is back to the old value.
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
# Convert alphas_bar_sqrt to betas
alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
alphas_bar[-1] = 4.8973451890853435e-08
return ((1 - alphas_bar) / alphas_bar) ** 0.5
class ModelSamplingDiscrete:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"sampling": (["eps", "v_prediction", "lcm"],),
"zsnr": ("BOOLEAN", {"default": False}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "advanced/model"
def patch(self, model, sampling, zsnr):
m = model.clone()
sampling_base = comfy.model_sampling.ModelSamplingDiscrete
if sampling == "eps":
sampling_type = comfy.model_sampling.EPS
elif sampling == "v_prediction":
sampling_type = comfy.model_sampling.V_PREDICTION
elif sampling == "lcm":
sampling_type = LCM
sampling_base = ModelSamplingDiscreteLCM
class ModelSamplingAdvanced(sampling_base, sampling_type):
pass
model_sampling = ModelSamplingAdvanced()
if zsnr:
model_sampling.set_sigmas(rescale_zero_terminal_snr_sigmas(model_sampling.sigmas))
m.add_object_patch("model_sampling", model_sampling)
return (m, )
class RescaleCFG:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"multiplier": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "advanced/model"
def patch(self, model, multiplier):
def rescale_cfg(args):
cond = args["cond"]
uncond = args["uncond"]
cond_scale = args["cond_scale"]
sigma = args["sigma"]
sigma = sigma.view(sigma.shape[:1] + (1,) * (cond.ndim - 1))
x_orig = args["input"]
#rescale cfg has to be done on v-pred model output
x = x_orig / (sigma * sigma + 1.0)
cond = ((x - (x_orig - cond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma)
uncond = ((x - (x_orig - uncond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma)
#rescalecfg
x_cfg = uncond + cond_scale * (cond - uncond)
ro_pos = torch.std(cond, dim=(1,2,3), keepdim=True)
ro_cfg = torch.std(x_cfg, dim=(1,2,3), keepdim=True)
x_rescaled = x_cfg * (ro_pos / ro_cfg)
x_final = multiplier * x_rescaled + (1.0 - multiplier) * x_cfg
return x_orig - (x - x_final * sigma / (sigma * sigma + 1.0) ** 0.5)
m = model.clone()
m.set_model_sampler_cfg_function(rescale_cfg)
return (m, )
NODE_CLASS_MAPPINGS = {
"ModelSamplingDiscrete": ModelSamplingDiscrete,
"RescaleCFG": RescaleCFG,
}