mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
bd07ad1861
By adding a downscale to the unet in the first timesteps this node lets you generate images at higher resolutions with less consistency issues.
46 lines
1.9 KiB
Python
46 lines
1.9 KiB
Python
import torch
|
|
|
|
class PatchModelAddDownscale:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "model": ("MODEL",),
|
|
"block_number": ("INT", {"default": 3, "min": 1, "max": 32, "step": 1}),
|
|
"downscale_factor": ("FLOAT", {"default": 2.0, "min": 0.1, "max": 9.0, "step": 0.001}),
|
|
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
|
|
"end_percent": ("FLOAT", {"default": 0.35, "min": 0.0, "max": 1.0, "step": 0.001}),
|
|
}}
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "patch"
|
|
|
|
CATEGORY = "_for_testing"
|
|
|
|
def patch(self, model, block_number, downscale_factor, start_percent, end_percent):
|
|
sigma_start = model.model.model_sampling.percent_to_sigma(start_percent).item()
|
|
sigma_end = model.model.model_sampling.percent_to_sigma(end_percent).item()
|
|
|
|
def input_block_patch(h, transformer_options):
|
|
if transformer_options["block"][1] == block_number:
|
|
sigma = transformer_options["sigmas"][0].item()
|
|
if sigma <= sigma_start and sigma >= sigma_end:
|
|
h = torch.nn.functional.interpolate(h, scale_factor=(1.0 / downscale_factor), mode="bicubic", align_corners=False)
|
|
return h
|
|
|
|
def output_block_patch(h, hsp, transformer_options):
|
|
if h.shape[2] != hsp.shape[2]:
|
|
h = torch.nn.functional.interpolate(h, size=(hsp.shape[2], hsp.shape[3]), mode="bicubic", align_corners=False)
|
|
return h, hsp
|
|
|
|
m = model.clone()
|
|
m.set_model_input_block_patch(input_block_patch)
|
|
m.set_model_output_block_patch(output_block_patch)
|
|
return (m, )
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"PatchModelAddDownscale": PatchModelAddDownscale,
|
|
}
|
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = {
|
|
# Sampling
|
|
"PatchModelAddDownscale": "PatchModelAddDownscale (Kohya Deep Shrink)",
|
|
}
|