mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-12 02:45:16 +00:00
a5f4292f9f
* Let tokenizers return weights to be stored in the saved checkpoint. * Basic hunyuan dit implementation. * Fix some resolutions not working. * Support hydit checkpoint save. * Init with right dtype. * Switch to optimized attention in pooler. * Fix black images on hunyuan dit.
225 lines
8.5 KiB
Python
225 lines
8.5 KiB
Python
import torch
|
|
import numpy as np
|
|
from typing import Union
|
|
|
|
|
|
def _to_tuple(x):
|
|
if isinstance(x, int):
|
|
return x, x
|
|
else:
|
|
return x
|
|
|
|
|
|
def get_fill_resize_and_crop(src, tgt):
|
|
th, tw = _to_tuple(tgt)
|
|
h, w = _to_tuple(src)
|
|
|
|
tr = th / tw # base resolution
|
|
r = h / w # target resolution
|
|
|
|
# resize
|
|
if r > tr:
|
|
resize_height = th
|
|
resize_width = int(round(th / h * w))
|
|
else:
|
|
resize_width = tw
|
|
resize_height = int(round(tw / w * h)) # resize the target resolution down based on the base resolution
|
|
|
|
crop_top = int(round((th - resize_height) / 2.0))
|
|
crop_left = int(round((tw - resize_width) / 2.0))
|
|
|
|
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
|
|
|
|
|
|
def get_meshgrid(start, *args):
|
|
if len(args) == 0:
|
|
# start is grid_size
|
|
num = _to_tuple(start)
|
|
start = (0, 0)
|
|
stop = num
|
|
elif len(args) == 1:
|
|
# start is start, args[0] is stop, step is 1
|
|
start = _to_tuple(start)
|
|
stop = _to_tuple(args[0])
|
|
num = (stop[0] - start[0], stop[1] - start[1])
|
|
elif len(args) == 2:
|
|
# start is start, args[0] is stop, args[1] is num
|
|
start = _to_tuple(start)
|
|
stop = _to_tuple(args[0])
|
|
num = _to_tuple(args[1])
|
|
else:
|
|
raise ValueError(f"len(args) should be 0, 1 or 2, but got {len(args)}")
|
|
|
|
grid_h = np.linspace(start[0], stop[0], num[0], endpoint=False, dtype=np.float32)
|
|
grid_w = np.linspace(start[1], stop[1], num[1], endpoint=False, dtype=np.float32)
|
|
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
|
grid = np.stack(grid, axis=0) # [2, W, H]
|
|
return grid
|
|
|
|
#################################################################################
|
|
# Sine/Cosine Positional Embedding Functions #
|
|
#################################################################################
|
|
# https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
|
|
|
|
def get_2d_sincos_pos_embed(embed_dim, start, *args, cls_token=False, extra_tokens=0):
|
|
"""
|
|
grid_size: int of the grid height and width
|
|
return:
|
|
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
|
"""
|
|
grid = get_meshgrid(start, *args) # [2, H, w]
|
|
# grid_h = np.arange(grid_size, dtype=np.float32)
|
|
# grid_w = np.arange(grid_size, dtype=np.float32)
|
|
# grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
|
# grid = np.stack(grid, axis=0) # [2, W, H]
|
|
|
|
grid = grid.reshape([2, 1, *grid.shape[1:]])
|
|
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
|
if cls_token and extra_tokens > 0:
|
|
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
|
|
return pos_embed
|
|
|
|
|
|
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
|
assert embed_dim % 2 == 0
|
|
|
|
# use half of dimensions to encode grid_h
|
|
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
|
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
|
|
|
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
|
return emb
|
|
|
|
|
|
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
|
"""
|
|
embed_dim: output dimension for each position
|
|
pos: a list of positions to be encoded: size (W,H)
|
|
out: (M, D)
|
|
"""
|
|
assert embed_dim % 2 == 0
|
|
omega = np.arange(embed_dim // 2, dtype=np.float64)
|
|
omega /= embed_dim / 2.
|
|
omega = 1. / 10000**omega # (D/2,)
|
|
|
|
pos = pos.reshape(-1) # (M,)
|
|
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
|
|
|
|
emb_sin = np.sin(out) # (M, D/2)
|
|
emb_cos = np.cos(out) # (M, D/2)
|
|
|
|
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
|
return emb
|
|
|
|
|
|
#################################################################################
|
|
# Rotary Positional Embedding Functions #
|
|
#################################################################################
|
|
# https://github.com/facebookresearch/llama/blob/main/llama/model.py#L443
|
|
|
|
def get_2d_rotary_pos_embed(embed_dim, start, *args, use_real=True):
|
|
"""
|
|
This is a 2d version of precompute_freqs_cis, which is a RoPE for image tokens with 2d structure.
|
|
|
|
Parameters
|
|
----------
|
|
embed_dim: int
|
|
embedding dimension size
|
|
start: int or tuple of int
|
|
If len(args) == 0, start is num; If len(args) == 1, start is start, args[0] is stop, step is 1;
|
|
If len(args) == 2, start is start, args[0] is stop, args[1] is num.
|
|
use_real: bool
|
|
If True, return real part and imaginary part separately. Otherwise, return complex numbers.
|
|
|
|
Returns
|
|
-------
|
|
pos_embed: torch.Tensor
|
|
[HW, D/2]
|
|
"""
|
|
grid = get_meshgrid(start, *args) # [2, H, w]
|
|
grid = grid.reshape([2, 1, *grid.shape[1:]]) # Returns a sampling matrix with the same resolution as the target resolution
|
|
pos_embed = get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=use_real)
|
|
return pos_embed
|
|
|
|
|
|
def get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=False):
|
|
assert embed_dim % 4 == 0
|
|
|
|
# use half of dimensions to encode grid_h
|
|
emb_h = get_1d_rotary_pos_embed(embed_dim // 2, grid[0].reshape(-1), use_real=use_real) # (H*W, D/4)
|
|
emb_w = get_1d_rotary_pos_embed(embed_dim // 2, grid[1].reshape(-1), use_real=use_real) # (H*W, D/4)
|
|
|
|
if use_real:
|
|
cos = torch.cat([emb_h[0], emb_w[0]], dim=1) # (H*W, D/2)
|
|
sin = torch.cat([emb_h[1], emb_w[1]], dim=1) # (H*W, D/2)
|
|
return cos, sin
|
|
else:
|
|
emb = torch.cat([emb_h, emb_w], dim=1) # (H*W, D/2)
|
|
return emb
|
|
|
|
|
|
def get_1d_rotary_pos_embed(dim: int, pos: Union[np.ndarray, int], theta: float = 10000.0, use_real=False):
|
|
"""
|
|
Precompute the frequency tensor for complex exponentials (cis) with given dimensions.
|
|
|
|
This function calculates a frequency tensor with complex exponentials using the given dimension 'dim'
|
|
and the end index 'end'. The 'theta' parameter scales the frequencies.
|
|
The returned tensor contains complex values in complex64 data type.
|
|
|
|
Args:
|
|
dim (int): Dimension of the frequency tensor.
|
|
pos (np.ndarray, int): Position indices for the frequency tensor. [S] or scalar
|
|
theta (float, optional): Scaling factor for frequency computation. Defaults to 10000.0.
|
|
use_real (bool, optional): If True, return real part and imaginary part separately.
|
|
Otherwise, return complex numbers.
|
|
|
|
Returns:
|
|
torch.Tensor: Precomputed frequency tensor with complex exponentials. [S, D/2]
|
|
|
|
"""
|
|
if isinstance(pos, int):
|
|
pos = np.arange(pos)
|
|
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) # [D/2]
|
|
t = torch.from_numpy(pos).to(freqs.device) # type: ignore # [S]
|
|
freqs = torch.outer(t, freqs).float() # type: ignore # [S, D/2]
|
|
if use_real:
|
|
freqs_cos = freqs.cos().repeat_interleave(2, dim=1) # [S, D]
|
|
freqs_sin = freqs.sin().repeat_interleave(2, dim=1) # [S, D]
|
|
return freqs_cos, freqs_sin
|
|
else:
|
|
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 # [S, D/2]
|
|
return freqs_cis
|
|
|
|
|
|
|
|
def calc_sizes(rope_img, patch_size, th, tw):
|
|
if rope_img == 'extend':
|
|
# Expansion mode
|
|
sub_args = [(th, tw)]
|
|
elif rope_img.startswith('base'):
|
|
# Based on the specified dimensions, other dimensions are obtained through interpolation.
|
|
base_size = int(rope_img[4:]) // 8 // patch_size
|
|
start, stop = get_fill_resize_and_crop((th, tw), base_size)
|
|
sub_args = [start, stop, (th, tw)]
|
|
else:
|
|
raise ValueError(f"Unknown rope_img: {rope_img}")
|
|
return sub_args
|
|
|
|
|
|
def init_image_posemb(rope_img,
|
|
resolutions,
|
|
patch_size,
|
|
hidden_size,
|
|
num_heads,
|
|
log_fn,
|
|
rope_real=True,
|
|
):
|
|
freqs_cis_img = {}
|
|
for reso in resolutions:
|
|
th, tw = reso.height // 8 // patch_size, reso.width // 8 // patch_size
|
|
sub_args = calc_sizes(rope_img, patch_size, th, tw)
|
|
freqs_cis_img[str(reso)] = get_2d_rotary_pos_embed(hidden_size // num_heads, *sub_args, use_real=rope_real)
|
|
log_fn(f" Using image RoPE ({rope_img}) ({'real' if rope_real else 'complex'}): {sub_args} | ({reso}) "
|
|
f"{freqs_cis_img[str(reso)][0].shape if rope_real else freqs_cis_img[str(reso)].shape}")
|
|
return freqs_cis_img
|