ComfyUI/comfy_api_nodes/nodes_api.py
Robin Huang dea1c7474a
Add support for API Nodes in ComfyUI. (#7726)
* Add Ideogram generate node.

* Add staging api.

* COMFY_API_NODE_NAME node property

* switch to boolean flag and use original node name for id

* add optional to type

* Add API_NODE and common error for missing auth token (#5)

* Add Minimax Video Generation + Async Task queue polling example (#6)

* [Minimax] Show video preview and embed workflow in ouput (#7)

* [API Nodes] Send empty request body instead of empty dictionary. (#8)

* Fixed: removed function from rebase.

* Add pydantic.

* Remove uv.lock

* Remove polling operations.

* Update stubs workflow.

* Remove polling comments.

* Update stubs.

* Use pydantic v2.

* Use pydantic v2.

* Add basic OpenAITextToImage node

* Add.

* convert image to tensor.

* Improve types.

* Ruff.

* Push tests.

* Handle multi-form data.

- Don't set content-type for multi-part/form
- Use data field instead of JSON

* Change to api.comfy.org

* Handle error code 409.

* separate out nodes per openai model

* Update error message.

* fix wrong output type

* re-categorize nodes, remove ideogram (for now)

* oops, fix mappings

* fix ruff

* Update frontend  to 1.17.9

* embargo lift rename nodes

* remove unused autogenerated model code

* fix API type error and add b64 support for 4o

* fix ruff

* oops forgot mask scaling code

* Remove unused types.

---------

Co-authored-by: bymyself <cbyrne@comfy.org>
Co-authored-by: Yoland Y <4950057+yoland68@users.noreply.github.com>
Co-authored-by: thot-experiment <thot@thiic.cc>
2025-04-23 15:38:34 -04:00

426 lines
14 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import io
from inspect import cleandoc
from comfy.utils import common_upscale
from comfy.comfy_types.node_typing import IO, ComfyNodeABC, InputTypeDict
from comfy_api_nodes.apis import (
OpenAIImageGenerationRequest,
OpenAIImageEditRequest,
OpenAIImageGenerationResponse
)
from comfy_api_nodes.apis.client import ApiEndpoint, HttpMethod, SynchronousOperation
import numpy as np
from PIL import Image
import requests
import torch
import math
import base64
def downscale_input(image):
samples = image.movedim(-1,1)
#downscaling input images to roughly the same size as the outputs
total = int(1536 * 1024)
scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2]))
if scale_by >= 1:
return image
width = round(samples.shape[3] * scale_by)
height = round(samples.shape[2] * scale_by)
s = common_upscale(samples, width, height, "lanczos", "disabled")
s = s.movedim(1,-1)
return s
def validate_and_cast_response (response):
# validate raw JSON response
data = response.data
if not data or len(data) == 0:
raise Exception("No images returned from API endpoint")
# Get base64 image data
image_url = data[0].url
b64_data = data[0].b64_json
if not image_url and not b64_data:
raise Exception("No image was generated in the response")
if b64_data:
img_data = base64.b64decode(b64_data)
img = Image.open(io.BytesIO(img_data))
elif image_url:
img_response = requests.get(image_url)
if img_response.status_code != 200:
raise Exception("Failed to download the image")
img = Image.open(io.BytesIO(img_response.content))
img = img.convert("RGB") # Ensure RGB format
# Convert to numpy array, normalize to float32 between 0 and 1
img_array = np.array(img).astype(np.float32) / 255.0
# Convert to torch tensor and add batch dimension
return torch.from_numpy(img_array)[None,]
class OpenAIDalle2(ComfyNodeABC):
"""
Generates images synchronously via OpenAI's DALL·E 2 endpoint.
Uses the proxy at /proxy/openai/images/generations. Returned URLs are shortlived,
so download or cache results if you need to keep them.
"""
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {
"prompt": (IO.STRING, {
"multiline": True,
"default": "",
"tooltip": "Text prompt for DALL·E",
}),
},
"optional": {
"seed": (IO.INT, {
"default": 0,
"min": 0,
"max": 2**31-1,
"step": 1,
"display": "number",
"tooltip": "not implemented yet in backend",
}),
"size": (IO.COMBO, {
"options": ["256x256", "512x512", "1024x1024"],
"default": "1024x1024",
"tooltip": "Image size",
}),
"n": (IO.INT, {
"default": 1,
"min": 1,
"max": 8,
"step": 1,
"display": "number",
"tooltip": "How many images to generate",
}),
"image": (IO.IMAGE, {
"default": None,
"tooltip": "Optional reference image for image editing.",
}),
"mask": (IO.MASK, {
"default": None,
"tooltip": "Optional mask for inpainting (white areas will be replaced)",
}),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG"
}
}
RETURN_TYPES = (IO.IMAGE,)
FUNCTION = "api_call"
CATEGORY = "api node"
DESCRIPTION = cleandoc(__doc__ or "")
API_NODE = True
def api_call(self, prompt, seed=0, image=None, mask=None, n=1, size="1024x1024", auth_token=None):
model = "dall-e-2"
path = "/proxy/openai/images/generations"
request_class = OpenAIImageGenerationRequest
img_binary = None
if image is not None and mask is not None:
path = "/proxy/openai/images/edits"
request_class = OpenAIImageEditRequest
input_tensor = image.squeeze().cpu()
height, width, channels = input_tensor.shape
rgba_tensor = torch.ones(height, width, 4, device="cpu")
rgba_tensor[:, :, :channels] = input_tensor
if mask.shape[1:] != image.shape[1:-1]:
raise Exception("Mask and Image must be the same size")
rgba_tensor[:,:,3] = (1-mask.squeeze().cpu())
rgba_tensor = downscale_input(rgba_tensor.unsqueeze(0)).squeeze()
image_np = (rgba_tensor.numpy() * 255).astype(np.uint8)
img = Image.fromarray(image_np)
img_byte_arr = io.BytesIO()
img.save(img_byte_arr, format='PNG')
img_byte_arr.seek(0)
img_binary = img_byte_arr#.getvalue()
img_binary.name = "image.png"
elif image is not None or mask is not None:
raise Exception("Dall-E 2 image editing requires an image AND a mask")
# Build the operation
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=path,
method=HttpMethod.POST,
request_model=request_class,
response_model=OpenAIImageGenerationResponse
),
request=request_class(
model=model,
prompt=prompt,
n=n,
size=size,
seed=seed,
),
files={
"image": img_binary,
} if img_binary else None,
auth_token=auth_token
)
response = operation.execute()
img_tensor = validate_and_cast_response(response)
return (img_tensor,)
class OpenAIDalle3(ComfyNodeABC):
"""
Generates images synchronously via OpenAI's DALL·E 3 endpoint.
Uses the proxy at /proxy/openai/images/generations. Returned URLs are shortlived,
so download or cache results if you need to keep them.
"""
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {
"prompt": (IO.STRING, {
"multiline": True,
"default": "",
"tooltip": "Text prompt for DALL·E",
}),
},
"optional": {
"seed": (IO.INT, {
"default": 0,
"min": 0,
"max": 2**31-1,
"step": 1,
"display": "number",
"tooltip": "not implemented yet in backend",
}),
"quality" : (IO.COMBO, {
"options": ["standard","hd"],
"default": "standard",
"tooltip": "Image quality",
}),
"style": (IO.COMBO, {
"options": ["natural","vivid"],
"default": "natural",
"tooltip": "Vivid causes the model to lean towards generating hyper-real and dramatic images. Natural causes the model to produce more natural, less hyper-real looking images.",
}),
"size": (IO.COMBO, {
"options": ["1024x1024", "1024x1792", "1792x1024"],
"default": "1024x1024",
"tooltip": "Image size",
}),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG"
}
}
RETURN_TYPES = (IO.IMAGE,)
FUNCTION = "api_call"
CATEGORY = "api node"
DESCRIPTION = cleandoc(__doc__ or "")
API_NODE = True
def api_call(self, prompt, seed=0, style="natural", quality="standard", size="1024x1024", auth_token=None):
model = "dall-e-3"
# build the operation
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/openai/images/generations",
method=HttpMethod.POST,
request_model=OpenAIImageGenerationRequest,
response_model=OpenAIImageGenerationResponse
),
request=OpenAIImageGenerationRequest(
model=model,
prompt=prompt,
quality=quality,
size=size,
style=style,
seed=seed,
),
auth_token=auth_token
)
response = operation.execute()
img_tensor = validate_and_cast_response(response)
return (img_tensor,)
class OpenAIGPTImage1(ComfyNodeABC):
"""
Generates images synchronously via OpenAI's GPT Image 1 endpoint.
Uses the proxy at /proxy/openai/images/generations. Returned URLs are shortlived,
so download or cache results if you need to keep them.
"""
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {
"prompt": (IO.STRING, {
"multiline": True,
"default": "",
"tooltip": "Text prompt for GPT Image 1",
}),
},
"optional": {
"seed": (IO.INT, {
"default": 0,
"min": 0,
"max": 2**31-1,
"step": 1,
"display": "number",
"tooltip": "not implemented yet in backend",
}),
"quality": (IO.COMBO, {
"options": ["low","medium","high"],
"default": "low",
"tooltip": "Image quality, affects cost and generation time.",
}),
"background": (IO.COMBO, {
"options": ["opaque","transparent"],
"default": "opaque",
"tooltip": "Return image with or without background",
}),
"size": (IO.COMBO, {
"options": ["auto", "1024x1024", "1024x1536", "1536x1024"],
"default": "auto",
"tooltip": "Image size",
}),
"n": (IO.INT, {
"default": 1,
"min": 1,
"max": 8,
"step": 1,
"display": "number",
"tooltip": "How many images to generate",
}),
"image": (IO.IMAGE, {
"default": None,
"tooltip": "Optional reference image for image editing.",
}),
"mask": (IO.MASK, {
"default": None,
"tooltip": "Optional mask for inpainting (white areas will be replaced)",
}),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG"
}
}
RETURN_TYPES = (IO.IMAGE,)
FUNCTION = "api_call"
CATEGORY = "api node"
DESCRIPTION = cleandoc(__doc__ or "")
API_NODE = True
def api_call(self, prompt, seed=0, quality="low", background="opaque", image=None, mask=None, n=1, size="1024x1024", auth_token=None):
model = "gpt-image-1"
path = "/proxy/openai/images/generations"
request_class = OpenAIImageGenerationRequest
img_binary = None
mask_binary = None
if image is not None:
path = "/proxy/openai/images/edits"
request_class = OpenAIImageEditRequest
scaled_image = downscale_input(image).squeeze()
image_np = (scaled_image.numpy() * 255).astype(np.uint8)
img = Image.fromarray(image_np)
img_byte_arr = io.BytesIO()
img.save(img_byte_arr, format='PNG')
img_byte_arr.seek(0)
img_binary = img_byte_arr#.getvalue()
img_binary.name = "image.png"
if mask is not None:
if image is None:
raise Exception("Cannot use a mask without an input image")
if mask.shape[1:] != image.shape[1:-1]:
raise Exception("Mask and Image must be the same size")
batch, height, width = mask.shape
rgba_mask = torch.zeros(height, width, 4, device="cpu")
rgba_mask[:,:,3] = (1-mask.squeeze().cpu())
scaled_mask = downscale_input(rgba_mask.unsqueeze(0)).squeeze()
mask_np = (scaled_mask.numpy() * 255).astype(np.uint8)
mask_img = Image.fromarray(mask_np)
mask_img_byte_arr = io.BytesIO()
mask_img.save(mask_img_byte_arr, format='PNG')
mask_img_byte_arr.seek(0)
mask_binary = mask_img_byte_arr#.getvalue()
mask_binary.name = "mask.png"
files = {}
if img_binary:
files["image"] = img_binary
if mask_binary:
files["mask"] = mask_binary
# Build the operation
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=path,
method=HttpMethod.POST,
request_model=request_class,
response_model=OpenAIImageGenerationResponse
),
request=request_class(
model=model,
prompt=prompt,
quality=quality,
background=background,
n=n,
seed=seed,
size=size,
),
files=files if files else None,
auth_token=auth_token
)
response = operation.execute()
img_tensor = validate_and_cast_response(response)
return (img_tensor,)
# A dictionary that contains all nodes you want to export with their names
# NOTE: names should be globally unique
NODE_CLASS_MAPPINGS = {
"OpenAIDalle2": OpenAIDalle2,
"OpenAIDalle3": OpenAIDalle3,
"OpenAIGPTImage1": OpenAIGPTImage1,
}
# A dictionary that contains the friendly/humanly readable titles for the nodes
NODE_DISPLAY_NAME_MAPPINGS = {
"OpenAIDalle2": "OpenAI DALL·E 2",
"OpenAIDalle3": "OpenAI DALL·E 3",
"OpenAIGPTImage1": "OpenAI GPT Image 1",
}