mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
56f3c660bf
If you want to sample Flux dev exactly how the reference code does use the same resolution as your image in this node.
327 lines
12 KiB
Python
327 lines
12 KiB
Python
import folder_paths
|
|
import comfy.sd
|
|
import comfy.model_sampling
|
|
import comfy.latent_formats
|
|
import nodes
|
|
import torch
|
|
|
|
class LCM(comfy.model_sampling.EPS):
|
|
def calculate_denoised(self, sigma, model_output, model_input):
|
|
timestep = self.timestep(sigma).view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
|
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
|
x0 = model_input - model_output * sigma
|
|
|
|
sigma_data = 0.5
|
|
scaled_timestep = timestep * 10.0 #timestep_scaling
|
|
|
|
c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2)
|
|
c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5
|
|
|
|
return c_out * x0 + c_skip * model_input
|
|
|
|
class X0(comfy.model_sampling.EPS):
|
|
def calculate_denoised(self, sigma, model_output, model_input):
|
|
return model_output
|
|
|
|
class ModelSamplingDiscreteDistilled(comfy.model_sampling.ModelSamplingDiscrete):
|
|
original_timesteps = 50
|
|
|
|
def __init__(self, model_config=None):
|
|
super().__init__(model_config)
|
|
|
|
self.skip_steps = self.num_timesteps // self.original_timesteps
|
|
|
|
sigmas_valid = torch.zeros((self.original_timesteps), dtype=torch.float32)
|
|
for x in range(self.original_timesteps):
|
|
sigmas_valid[self.original_timesteps - 1 - x] = self.sigmas[self.num_timesteps - 1 - x * self.skip_steps]
|
|
|
|
self.set_sigmas(sigmas_valid)
|
|
|
|
def timestep(self, sigma):
|
|
log_sigma = sigma.log()
|
|
dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
|
|
return (dists.abs().argmin(dim=0).view(sigma.shape) * self.skip_steps + (self.skip_steps - 1)).to(sigma.device)
|
|
|
|
def sigma(self, timestep):
|
|
t = torch.clamp(((timestep.float().to(self.log_sigmas.device) - (self.skip_steps - 1)) / self.skip_steps).float(), min=0, max=(len(self.sigmas) - 1))
|
|
low_idx = t.floor().long()
|
|
high_idx = t.ceil().long()
|
|
w = t.frac()
|
|
log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx]
|
|
return log_sigma.exp().to(timestep.device)
|
|
|
|
|
|
def rescale_zero_terminal_snr_sigmas(sigmas):
|
|
alphas_cumprod = 1 / ((sigmas * sigmas) + 1)
|
|
alphas_bar_sqrt = alphas_cumprod.sqrt()
|
|
|
|
# Store old values.
|
|
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
|
|
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
|
|
|
|
# Shift so the last timestep is zero.
|
|
alphas_bar_sqrt -= (alphas_bar_sqrt_T)
|
|
|
|
# Scale so the first timestep is back to the old value.
|
|
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
|
|
|
|
# Convert alphas_bar_sqrt to betas
|
|
alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
|
|
alphas_bar[-1] = 4.8973451890853435e-08
|
|
return ((1 - alphas_bar) / alphas_bar) ** 0.5
|
|
|
|
class ModelSamplingDiscrete:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "model": ("MODEL",),
|
|
"sampling": (["eps", "v_prediction", "lcm", "x0"],),
|
|
"zsnr": ("BOOLEAN", {"default": False}),
|
|
}}
|
|
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "patch"
|
|
|
|
CATEGORY = "advanced/model"
|
|
|
|
def patch(self, model, sampling, zsnr):
|
|
m = model.clone()
|
|
|
|
sampling_base = comfy.model_sampling.ModelSamplingDiscrete
|
|
if sampling == "eps":
|
|
sampling_type = comfy.model_sampling.EPS
|
|
elif sampling == "v_prediction":
|
|
sampling_type = comfy.model_sampling.V_PREDICTION
|
|
elif sampling == "lcm":
|
|
sampling_type = LCM
|
|
sampling_base = ModelSamplingDiscreteDistilled
|
|
elif sampling == "x0":
|
|
sampling_type = X0
|
|
|
|
class ModelSamplingAdvanced(sampling_base, sampling_type):
|
|
pass
|
|
|
|
model_sampling = ModelSamplingAdvanced(model.model.model_config)
|
|
if zsnr:
|
|
model_sampling.set_sigmas(rescale_zero_terminal_snr_sigmas(model_sampling.sigmas))
|
|
|
|
m.add_object_patch("model_sampling", model_sampling)
|
|
return (m, )
|
|
|
|
class ModelSamplingStableCascade:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "model": ("MODEL",),
|
|
"shift": ("FLOAT", {"default": 2.0, "min": 0.0, "max": 100.0, "step":0.01}),
|
|
}}
|
|
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "patch"
|
|
|
|
CATEGORY = "advanced/model"
|
|
|
|
def patch(self, model, shift):
|
|
m = model.clone()
|
|
|
|
sampling_base = comfy.model_sampling.StableCascadeSampling
|
|
sampling_type = comfy.model_sampling.EPS
|
|
|
|
class ModelSamplingAdvanced(sampling_base, sampling_type):
|
|
pass
|
|
|
|
model_sampling = ModelSamplingAdvanced(model.model.model_config)
|
|
model_sampling.set_parameters(shift)
|
|
m.add_object_patch("model_sampling", model_sampling)
|
|
return (m, )
|
|
|
|
class ModelSamplingSD3:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "model": ("MODEL",),
|
|
"shift": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 100.0, "step":0.01}),
|
|
}}
|
|
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "patch"
|
|
|
|
CATEGORY = "advanced/model"
|
|
|
|
def patch(self, model, shift, multiplier=1000):
|
|
m = model.clone()
|
|
|
|
sampling_base = comfy.model_sampling.ModelSamplingDiscreteFlow
|
|
sampling_type = comfy.model_sampling.CONST
|
|
|
|
class ModelSamplingAdvanced(sampling_base, sampling_type):
|
|
pass
|
|
|
|
model_sampling = ModelSamplingAdvanced(model.model.model_config)
|
|
model_sampling.set_parameters(shift=shift, multiplier=multiplier)
|
|
m.add_object_patch("model_sampling", model_sampling)
|
|
return (m, )
|
|
|
|
class ModelSamplingAuraFlow(ModelSamplingSD3):
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "model": ("MODEL",),
|
|
"shift": ("FLOAT", {"default": 1.73, "min": 0.0, "max": 100.0, "step":0.01}),
|
|
}}
|
|
|
|
FUNCTION = "patch_aura"
|
|
|
|
def patch_aura(self, model, shift):
|
|
return self.patch(model, shift, multiplier=1.0)
|
|
|
|
class ModelSamplingFlux:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "model": ("MODEL",),
|
|
"max_shift": ("FLOAT", {"default": 1.15, "min": 0.0, "max": 100.0, "step":0.01}),
|
|
"base_shift": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 100.0, "step":0.01}),
|
|
"width": ("INT", {"default": 1024, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
|
|
"height": ("INT", {"default": 1024, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
|
|
}}
|
|
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "patch"
|
|
|
|
CATEGORY = "advanced/model"
|
|
|
|
def patch(self, model, max_shift, base_shift, width, height):
|
|
m = model.clone()
|
|
|
|
x1 = 256
|
|
x2 = 4096
|
|
mm = (max_shift - base_shift) / (x2 - x1)
|
|
b = base_shift - mm * x1
|
|
shift = (width * height / (8 * 8 * 2 * 2)) * mm + b
|
|
|
|
sampling_base = comfy.model_sampling.ModelSamplingFlux
|
|
sampling_type = comfy.model_sampling.CONST
|
|
|
|
class ModelSamplingAdvanced(sampling_base, sampling_type):
|
|
pass
|
|
|
|
model_sampling = ModelSamplingAdvanced(model.model.model_config)
|
|
model_sampling.set_parameters(shift=shift)
|
|
m.add_object_patch("model_sampling", model_sampling)
|
|
return (m, )
|
|
|
|
|
|
class ModelSamplingContinuousEDM:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "model": ("MODEL",),
|
|
"sampling": (["v_prediction", "edm_playground_v2.5", "eps"],),
|
|
"sigma_max": ("FLOAT", {"default": 120.0, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}),
|
|
"sigma_min": ("FLOAT", {"default": 0.002, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}),
|
|
}}
|
|
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "patch"
|
|
|
|
CATEGORY = "advanced/model"
|
|
|
|
def patch(self, model, sampling, sigma_max, sigma_min):
|
|
m = model.clone()
|
|
|
|
latent_format = None
|
|
sigma_data = 1.0
|
|
if sampling == "eps":
|
|
sampling_type = comfy.model_sampling.EPS
|
|
elif sampling == "v_prediction":
|
|
sampling_type = comfy.model_sampling.V_PREDICTION
|
|
elif sampling == "edm_playground_v2.5":
|
|
sampling_type = comfy.model_sampling.EDM
|
|
sigma_data = 0.5
|
|
latent_format = comfy.latent_formats.SDXL_Playground_2_5()
|
|
|
|
class ModelSamplingAdvanced(comfy.model_sampling.ModelSamplingContinuousEDM, sampling_type):
|
|
pass
|
|
|
|
model_sampling = ModelSamplingAdvanced(model.model.model_config)
|
|
model_sampling.set_parameters(sigma_min, sigma_max, sigma_data)
|
|
m.add_object_patch("model_sampling", model_sampling)
|
|
if latent_format is not None:
|
|
m.add_object_patch("latent_format", latent_format)
|
|
return (m, )
|
|
|
|
class ModelSamplingContinuousV:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "model": ("MODEL",),
|
|
"sampling": (["v_prediction"],),
|
|
"sigma_max": ("FLOAT", {"default": 500.0, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}),
|
|
"sigma_min": ("FLOAT", {"default": 0.03, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}),
|
|
}}
|
|
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "patch"
|
|
|
|
CATEGORY = "advanced/model"
|
|
|
|
def patch(self, model, sampling, sigma_max, sigma_min):
|
|
m = model.clone()
|
|
|
|
latent_format = None
|
|
sigma_data = 1.0
|
|
if sampling == "v_prediction":
|
|
sampling_type = comfy.model_sampling.V_PREDICTION
|
|
|
|
class ModelSamplingAdvanced(comfy.model_sampling.ModelSamplingContinuousV, sampling_type):
|
|
pass
|
|
|
|
model_sampling = ModelSamplingAdvanced(model.model.model_config)
|
|
model_sampling.set_parameters(sigma_min, sigma_max, sigma_data)
|
|
m.add_object_patch("model_sampling", model_sampling)
|
|
return (m, )
|
|
|
|
class RescaleCFG:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "model": ("MODEL",),
|
|
"multiplier": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
}}
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "patch"
|
|
|
|
CATEGORY = "advanced/model"
|
|
|
|
def patch(self, model, multiplier):
|
|
def rescale_cfg(args):
|
|
cond = args["cond"]
|
|
uncond = args["uncond"]
|
|
cond_scale = args["cond_scale"]
|
|
sigma = args["sigma"]
|
|
sigma = sigma.view(sigma.shape[:1] + (1,) * (cond.ndim - 1))
|
|
x_orig = args["input"]
|
|
|
|
#rescale cfg has to be done on v-pred model output
|
|
x = x_orig / (sigma * sigma + 1.0)
|
|
cond = ((x - (x_orig - cond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma)
|
|
uncond = ((x - (x_orig - uncond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma)
|
|
|
|
#rescalecfg
|
|
x_cfg = uncond + cond_scale * (cond - uncond)
|
|
ro_pos = torch.std(cond, dim=(1,2,3), keepdim=True)
|
|
ro_cfg = torch.std(x_cfg, dim=(1,2,3), keepdim=True)
|
|
|
|
x_rescaled = x_cfg * (ro_pos / ro_cfg)
|
|
x_final = multiplier * x_rescaled + (1.0 - multiplier) * x_cfg
|
|
|
|
return x_orig - (x - x_final * sigma / (sigma * sigma + 1.0) ** 0.5)
|
|
|
|
m = model.clone()
|
|
m.set_model_sampler_cfg_function(rescale_cfg)
|
|
return (m, )
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"ModelSamplingDiscrete": ModelSamplingDiscrete,
|
|
"ModelSamplingContinuousEDM": ModelSamplingContinuousEDM,
|
|
"ModelSamplingContinuousV": ModelSamplingContinuousV,
|
|
"ModelSamplingStableCascade": ModelSamplingStableCascade,
|
|
"ModelSamplingSD3": ModelSamplingSD3,
|
|
"ModelSamplingAuraFlow": ModelSamplingAuraFlow,
|
|
"ModelSamplingFlux": ModelSamplingFlux,
|
|
"RescaleCFG": RescaleCFG,
|
|
}
|