mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
d76a04b6ea
This node is unfinished, SVD checkpoints saved with this node will work with ComfyUI but not with anything else.
285 lines
10 KiB
Python
285 lines
10 KiB
Python
import comfy.sd
|
|
import comfy.utils
|
|
import comfy.model_base
|
|
import comfy.model_management
|
|
|
|
import folder_paths
|
|
import json
|
|
import os
|
|
|
|
from comfy.cli_args import args
|
|
|
|
class ModelMergeSimple:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "model1": ("MODEL",),
|
|
"model2": ("MODEL",),
|
|
"ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
}}
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "merge"
|
|
|
|
CATEGORY = "advanced/model_merging"
|
|
|
|
def merge(self, model1, model2, ratio):
|
|
m = model1.clone()
|
|
kp = model2.get_key_patches("diffusion_model.")
|
|
for k in kp:
|
|
m.add_patches({k: kp[k]}, 1.0 - ratio, ratio)
|
|
return (m, )
|
|
|
|
class ModelSubtract:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "model1": ("MODEL",),
|
|
"model2": ("MODEL",),
|
|
"multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
|
|
}}
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "merge"
|
|
|
|
CATEGORY = "advanced/model_merging"
|
|
|
|
def merge(self, model1, model2, multiplier):
|
|
m = model1.clone()
|
|
kp = model2.get_key_patches("diffusion_model.")
|
|
for k in kp:
|
|
m.add_patches({k: kp[k]}, - multiplier, multiplier)
|
|
return (m, )
|
|
|
|
class ModelAdd:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "model1": ("MODEL",),
|
|
"model2": ("MODEL",),
|
|
}}
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "merge"
|
|
|
|
CATEGORY = "advanced/model_merging"
|
|
|
|
def merge(self, model1, model2):
|
|
m = model1.clone()
|
|
kp = model2.get_key_patches("diffusion_model.")
|
|
for k in kp:
|
|
m.add_patches({k: kp[k]}, 1.0, 1.0)
|
|
return (m, )
|
|
|
|
|
|
class CLIPMergeSimple:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "clip1": ("CLIP",),
|
|
"clip2": ("CLIP",),
|
|
"ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
}}
|
|
RETURN_TYPES = ("CLIP",)
|
|
FUNCTION = "merge"
|
|
|
|
CATEGORY = "advanced/model_merging"
|
|
|
|
def merge(self, clip1, clip2, ratio):
|
|
m = clip1.clone()
|
|
kp = clip2.get_key_patches()
|
|
for k in kp:
|
|
if k.endswith(".position_ids") or k.endswith(".logit_scale"):
|
|
continue
|
|
m.add_patches({k: kp[k]}, 1.0 - ratio, ratio)
|
|
return (m, )
|
|
|
|
class ModelMergeBlocks:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "model1": ("MODEL",),
|
|
"model2": ("MODEL",),
|
|
"input": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
"middle": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
"out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
|
|
}}
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "merge"
|
|
|
|
CATEGORY = "advanced/model_merging"
|
|
|
|
def merge(self, model1, model2, **kwargs):
|
|
m = model1.clone()
|
|
kp = model2.get_key_patches("diffusion_model.")
|
|
default_ratio = next(iter(kwargs.values()))
|
|
|
|
for k in kp:
|
|
ratio = default_ratio
|
|
k_unet = k[len("diffusion_model."):]
|
|
|
|
last_arg_size = 0
|
|
for arg in kwargs:
|
|
if k_unet.startswith(arg) and last_arg_size < len(arg):
|
|
ratio = kwargs[arg]
|
|
last_arg_size = len(arg)
|
|
|
|
m.add_patches({k: kp[k]}, 1.0 - ratio, ratio)
|
|
return (m, )
|
|
|
|
def save_checkpoint(model, clip=None, vae=None, clip_vision=None, filename_prefix=None, output_dir=None, prompt=None, extra_pnginfo=None):
|
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, output_dir)
|
|
prompt_info = ""
|
|
if prompt is not None:
|
|
prompt_info = json.dumps(prompt)
|
|
|
|
metadata = {}
|
|
|
|
enable_modelspec = True
|
|
if isinstance(model.model, comfy.model_base.SDXL):
|
|
metadata["modelspec.architecture"] = "stable-diffusion-xl-v1-base"
|
|
elif isinstance(model.model, comfy.model_base.SDXLRefiner):
|
|
metadata["modelspec.architecture"] = "stable-diffusion-xl-v1-refiner"
|
|
else:
|
|
enable_modelspec = False
|
|
|
|
if enable_modelspec:
|
|
metadata["modelspec.sai_model_spec"] = "1.0.0"
|
|
metadata["modelspec.implementation"] = "sgm"
|
|
metadata["modelspec.title"] = "{} {}".format(filename, counter)
|
|
|
|
#TODO:
|
|
# "stable-diffusion-v1", "stable-diffusion-v1-inpainting", "stable-diffusion-v2-512",
|
|
# "stable-diffusion-v2-768-v", "stable-diffusion-v2-unclip-l", "stable-diffusion-v2-unclip-h",
|
|
# "v2-inpainting"
|
|
|
|
if model.model.model_type == comfy.model_base.ModelType.EPS:
|
|
metadata["modelspec.predict_key"] = "epsilon"
|
|
elif model.model.model_type == comfy.model_base.ModelType.V_PREDICTION:
|
|
metadata["modelspec.predict_key"] = "v"
|
|
|
|
if not args.disable_metadata:
|
|
metadata["prompt"] = prompt_info
|
|
if extra_pnginfo is not None:
|
|
for x in extra_pnginfo:
|
|
metadata[x] = json.dumps(extra_pnginfo[x])
|
|
|
|
output_checkpoint = f"{filename}_{counter:05}_.safetensors"
|
|
output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
|
|
|
|
comfy.sd.save_checkpoint(output_checkpoint, model, clip, vae, clip_vision, metadata=metadata)
|
|
|
|
class CheckpointSave:
|
|
def __init__(self):
|
|
self.output_dir = folder_paths.get_output_directory()
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "model": ("MODEL",),
|
|
"clip": ("CLIP",),
|
|
"vae": ("VAE",),
|
|
"filename_prefix": ("STRING", {"default": "checkpoints/ComfyUI"}),},
|
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},}
|
|
RETURN_TYPES = ()
|
|
FUNCTION = "save"
|
|
OUTPUT_NODE = True
|
|
|
|
CATEGORY = "advanced/model_merging"
|
|
|
|
def save(self, model, clip, vae, filename_prefix, prompt=None, extra_pnginfo=None):
|
|
save_checkpoint(model, clip=clip, vae=vae, filename_prefix=filename_prefix, output_dir=self.output_dir, prompt=prompt, extra_pnginfo=extra_pnginfo)
|
|
return {}
|
|
|
|
class CLIPSave:
|
|
def __init__(self):
|
|
self.output_dir = folder_paths.get_output_directory()
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "clip": ("CLIP",),
|
|
"filename_prefix": ("STRING", {"default": "clip/ComfyUI"}),},
|
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},}
|
|
RETURN_TYPES = ()
|
|
FUNCTION = "save"
|
|
OUTPUT_NODE = True
|
|
|
|
CATEGORY = "advanced/model_merging"
|
|
|
|
def save(self, clip, filename_prefix, prompt=None, extra_pnginfo=None):
|
|
prompt_info = ""
|
|
if prompt is not None:
|
|
prompt_info = json.dumps(prompt)
|
|
|
|
metadata = {}
|
|
if not args.disable_metadata:
|
|
metadata["prompt"] = prompt_info
|
|
if extra_pnginfo is not None:
|
|
for x in extra_pnginfo:
|
|
metadata[x] = json.dumps(extra_pnginfo[x])
|
|
|
|
comfy.model_management.load_models_gpu([clip.load_model()])
|
|
clip_sd = clip.get_sd()
|
|
|
|
for prefix in ["clip_l.", "clip_g.", ""]:
|
|
k = list(filter(lambda a: a.startswith(prefix), clip_sd.keys()))
|
|
current_clip_sd = {}
|
|
for x in k:
|
|
current_clip_sd[x] = clip_sd.pop(x)
|
|
if len(current_clip_sd) == 0:
|
|
continue
|
|
|
|
p = prefix[:-1]
|
|
replace_prefix = {}
|
|
filename_prefix_ = filename_prefix
|
|
if len(p) > 0:
|
|
filename_prefix_ = "{}_{}".format(filename_prefix_, p)
|
|
replace_prefix[prefix] = ""
|
|
replace_prefix["transformer."] = ""
|
|
|
|
full_output_folder, filename, counter, subfolder, filename_prefix_ = folder_paths.get_save_image_path(filename_prefix_, self.output_dir)
|
|
|
|
output_checkpoint = f"{filename}_{counter:05}_.safetensors"
|
|
output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
|
|
|
|
current_clip_sd = comfy.utils.state_dict_prefix_replace(current_clip_sd, replace_prefix)
|
|
|
|
comfy.utils.save_torch_file(current_clip_sd, output_checkpoint, metadata=metadata)
|
|
return {}
|
|
|
|
class VAESave:
|
|
def __init__(self):
|
|
self.output_dir = folder_paths.get_output_directory()
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "vae": ("VAE",),
|
|
"filename_prefix": ("STRING", {"default": "vae/ComfyUI_vae"}),},
|
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},}
|
|
RETURN_TYPES = ()
|
|
FUNCTION = "save"
|
|
OUTPUT_NODE = True
|
|
|
|
CATEGORY = "advanced/model_merging"
|
|
|
|
def save(self, vae, filename_prefix, prompt=None, extra_pnginfo=None):
|
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
|
|
prompt_info = ""
|
|
if prompt is not None:
|
|
prompt_info = json.dumps(prompt)
|
|
|
|
metadata = {}
|
|
if not args.disable_metadata:
|
|
metadata["prompt"] = prompt_info
|
|
if extra_pnginfo is not None:
|
|
for x in extra_pnginfo:
|
|
metadata[x] = json.dumps(extra_pnginfo[x])
|
|
|
|
output_checkpoint = f"{filename}_{counter:05}_.safetensors"
|
|
output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
|
|
|
|
comfy.utils.save_torch_file(vae.get_sd(), output_checkpoint, metadata=metadata)
|
|
return {}
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"ModelMergeSimple": ModelMergeSimple,
|
|
"ModelMergeBlocks": ModelMergeBlocks,
|
|
"ModelMergeSubtract": ModelSubtract,
|
|
"ModelMergeAdd": ModelAdd,
|
|
"CheckpointSave": CheckpointSave,
|
|
"CLIPMergeSimple": CLIPMergeSimple,
|
|
"CLIPSave": CLIPSave,
|
|
"VAESave": VAESave,
|
|
}
|