mirror of
https://github.com/coolsnowwolf/lede.git
synced 2025-06-16 12:35:30 +08:00

* target: add phytium support * kernel/video: add phytium platform ARM GPU support * config: add EFI support to phytium armv8 * target: phytium: remove rtl8821cs driver * target: phytium: refresh dts
556 lines
13 KiB
C
556 lines
13 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Special handling for phytium DMA core
|
|
*
|
|
*/
|
|
#include <linux/completion.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/irqreturn.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/spi/spi.h>
|
|
#include <linux/types.h>
|
|
#include <linux/module.h>
|
|
#include "spi-phytium.h"
|
|
|
|
#define RX_BUSY 0
|
|
#define RX_BURST_LEVEL 16
|
|
#define TX_BUSY 1
|
|
#define TX_BURST_LEVEL 16
|
|
|
|
#define DMA_MAX_BUF_SIZE 4096
|
|
|
|
static void phytium_spi_dma_maxburst_init(struct phytium_spi *fts)
|
|
{
|
|
struct dma_slave_caps caps;
|
|
u32 max_burst, def_burst;
|
|
int ret;
|
|
|
|
def_burst = fts->fifo_len / 2;
|
|
|
|
ret = dma_get_slave_caps(fts->rxchan, &caps);
|
|
if (!ret && caps.max_burst)
|
|
max_burst = caps.max_burst;
|
|
else
|
|
max_burst = RX_BURST_LEVEL;
|
|
|
|
fts->rxburst = min(max_burst, def_burst);
|
|
phytium_writel(fts, DMARDLR, 0x0);
|
|
|
|
ret = dma_get_slave_caps(fts->txchan, &caps);
|
|
if (!ret && caps.max_burst)
|
|
max_burst = caps.max_burst;
|
|
else
|
|
max_burst = TX_BURST_LEVEL;
|
|
|
|
/*
|
|
* Having a Rx DMA channel serviced with higher priority than a Tx DMA
|
|
* channel might not be enough to provide a well balanced DMA-based
|
|
* SPI transfer interface. There might still be moments when the Tx DMA
|
|
* channel is occasionally handled faster than the Rx DMA channel.
|
|
* That in its turn will eventually cause the SPI Rx FIFO overflow if
|
|
* SPI bus speed is high enough to fill the SPI Rx FIFO in before it's
|
|
* cleared by the Rx DMA channel. In order to fix the problem the Tx
|
|
* DMA activity is intentionally slowed down by limiting the SPI Tx
|
|
* FIFO depth with a value twice bigger than the Tx burst length.
|
|
*/
|
|
fts->txburst = min(max_burst, def_burst);
|
|
/* set dmatdlr to 0 + 1 */
|
|
phytium_writel(fts, DMATDLR, 0);
|
|
}
|
|
|
|
static void phytium_spi_dma_sg_burst_init(struct phytium_spi *fts)
|
|
{
|
|
struct dma_slave_caps tx = {0}, rx = {0};
|
|
|
|
dma_get_slave_caps(fts->txchan, &tx);
|
|
dma_get_slave_caps(fts->rxchan, &rx);
|
|
|
|
if (tx.max_sg_burst > 0 && rx.max_sg_burst > 0)
|
|
fts->dma_sg_burst = min(tx.max_sg_burst, rx.max_sg_burst);
|
|
else if (tx.max_sg_burst > 0)
|
|
fts->dma_sg_burst = tx.max_sg_burst;
|
|
else if (rx.max_sg_burst > 0)
|
|
fts->dma_sg_burst = rx.max_sg_burst;
|
|
else
|
|
fts->dma_sg_burst = 0;
|
|
}
|
|
|
|
static int phytium_spi_dma_init(struct device *dev, struct phytium_spi *fts)
|
|
{
|
|
fts->rxchan = dma_request_chan(dev, "rx");
|
|
if (IS_ERR_OR_NULL(fts->rxchan))
|
|
return -ENODEV;
|
|
|
|
fts->txchan = dma_request_chan(dev, "tx");
|
|
if (IS_ERR_OR_NULL(fts->txchan)) {
|
|
dev_err(dev, "can't request chan\n");
|
|
dma_release_channel(fts->rxchan);
|
|
fts->rxchan = NULL;
|
|
return -ENODEV;
|
|
}
|
|
|
|
fts->master->dma_rx = fts->rxchan;
|
|
fts->master->dma_tx = fts->txchan;
|
|
init_completion(&fts->dma_completion);
|
|
|
|
phytium_spi_dma_maxburst_init(fts);
|
|
phytium_spi_dma_sg_burst_init(fts);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void phytium_spi_dma_exit(struct phytium_spi *fts)
|
|
{
|
|
if (fts->txchan) {
|
|
dmaengine_terminate_sync(fts->txchan);
|
|
dma_release_channel(fts->txchan);
|
|
}
|
|
|
|
if (fts->rxchan) {
|
|
dmaengine_terminate_sync(fts->rxchan);
|
|
dma_release_channel(fts->rxchan);
|
|
}
|
|
}
|
|
|
|
static irqreturn_t phytium_spi_dma_transfer_handler(struct phytium_spi *fts)
|
|
{
|
|
phytium_spi_check_status(fts, false);
|
|
|
|
complete(&fts->dma_completion);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static bool phytium_spi_can_dma(struct spi_controller *master,
|
|
struct spi_device *spi, struct spi_transfer *xfer)
|
|
{
|
|
struct phytium_spi *fts = spi_controller_get_devdata(master);
|
|
|
|
return xfer->len > fts->fifo_len;
|
|
}
|
|
|
|
static enum dma_slave_buswidth phytium_spi_dma_convert_width(u8 n_bytes)
|
|
{
|
|
if (n_bytes == 1)
|
|
return DMA_SLAVE_BUSWIDTH_1_BYTE;
|
|
else if (n_bytes == 2)
|
|
return DMA_SLAVE_BUSWIDTH_2_BYTES;
|
|
|
|
return DMA_SLAVE_BUSWIDTH_UNDEFINED;
|
|
}
|
|
|
|
static int phytium_spi_dma_wait(struct phytium_spi *fts, unsigned int len,
|
|
u32 speed)
|
|
{
|
|
unsigned long long ms;
|
|
|
|
ms = len * MSEC_PER_SEC * BITS_PER_BYTE;
|
|
do_div(ms, speed);
|
|
ms += ms + 200;
|
|
|
|
if (ms > UINT_MAX)
|
|
ms = UINT_MAX;
|
|
|
|
ms = wait_for_completion_timeout(&fts->dma_completion,
|
|
msecs_to_jiffies(ms));
|
|
|
|
if (ms == 0) {
|
|
dev_err(&fts->master->cur_msg->spi->dev,
|
|
"DMA transaction timed out\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline bool phytium_spi_dma_tx_busy(struct phytium_spi *fts)
|
|
{
|
|
return !(phytium_readl(fts, SR) & SR_TF_EMPT);
|
|
}
|
|
|
|
static int phytium_spi_dma_wait_tx_done(struct phytium_spi *fts,
|
|
struct spi_transfer *xfer)
|
|
{
|
|
int retry = SPI_WAIT_RETRIES;
|
|
struct spi_delay delay;
|
|
u32 nents;
|
|
|
|
nents = phytium_readl(fts, TXFLR);
|
|
delay.unit = SPI_DELAY_UNIT_SCK;
|
|
delay.value = nents * fts->n_bytes * BITS_PER_BYTE;
|
|
|
|
while (phytium_spi_dma_tx_busy(fts) && retry--)
|
|
spi_delay_exec(&delay, xfer);
|
|
|
|
if (retry < 0) {
|
|
dev_err(&fts->master->dev, "Tx hanged up\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* fts->dma_chan_busy is set before the dma transfer starts, callback for tx
|
|
* channel will clear a corresponding bit.
|
|
*/
|
|
static void phytium_spi_dma_tx_done(void *arg)
|
|
{
|
|
struct phytium_spi *fts = arg;
|
|
|
|
clear_bit(TX_BUSY, &fts->dma_chan_busy);
|
|
if (test_bit(RX_BUSY, &fts->dma_chan_busy))
|
|
return;
|
|
|
|
complete(&fts->dma_completion);
|
|
}
|
|
|
|
static int phytium_spi_dma_config_tx(struct phytium_spi *fts)
|
|
{
|
|
struct dma_slave_config txconf;
|
|
|
|
memset(&txconf, 0, sizeof(txconf));
|
|
txconf.direction = DMA_MEM_TO_DEV;
|
|
txconf.dst_addr = fts->dma_addr;
|
|
txconf.dst_maxburst = fts->txburst;
|
|
txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
|
txconf.dst_addr_width = phytium_spi_dma_convert_width(fts->n_bytes);
|
|
txconf.device_fc = false;
|
|
|
|
return dmaengine_slave_config(fts->txchan, &txconf);
|
|
}
|
|
|
|
static int phytium_spi_dma_submit_tx(struct phytium_spi *fts, struct scatterlist *sgl,
|
|
unsigned int nents)
|
|
{
|
|
struct dma_async_tx_descriptor *txdesc;
|
|
dma_cookie_t cookie;
|
|
int ret;
|
|
|
|
txdesc = dmaengine_prep_slave_sg(fts->txchan, sgl, nents,
|
|
DMA_MEM_TO_DEV,
|
|
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
|
if (!txdesc)
|
|
return -ENOMEM;
|
|
|
|
txdesc->callback = phytium_spi_dma_tx_done;
|
|
txdesc->callback_param = fts;
|
|
|
|
cookie = dmaengine_submit(txdesc);
|
|
ret = dma_submit_error(cookie);
|
|
if (ret) {
|
|
dmaengine_terminate_sync(fts->txchan);
|
|
return ret;
|
|
}
|
|
|
|
set_bit(TX_BUSY, &fts->dma_chan_busy);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline bool phytium_spi_dma_rx_busy(struct phytium_spi *fts)
|
|
{
|
|
return !!(phytium_readl(fts, SR) & SR_RF_NOT_EMPT);
|
|
}
|
|
|
|
static int phytium_spi_dma_wait_rx_done(struct phytium_spi *fts)
|
|
{
|
|
int retry = SPI_WAIT_RETRIES;
|
|
struct spi_delay delay;
|
|
unsigned long ns, us;
|
|
u32 nents;
|
|
|
|
/*
|
|
* It's unlikely that DMA engine is still doing the data fetching, but
|
|
* if it's let's give it some reasonable time. The timeout calculation
|
|
* is based on the synchronous APB/SSI reference clock rate, on a
|
|
* number of data entries left in the Rx FIFO, times a number of clock
|
|
* periods normally needed for a single APB read/write transaction
|
|
* without PREADY signal utilized (which is true for the phytium APB SSI
|
|
* controller).
|
|
*/
|
|
nents = phytium_readl(fts, RXFLR);
|
|
ns = 4U * NSEC_PER_SEC / fts->max_freq * nents;
|
|
if (ns <= NSEC_PER_USEC) {
|
|
delay.unit = SPI_DELAY_UNIT_NSECS;
|
|
delay.value = ns;
|
|
} else {
|
|
us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
|
|
delay.unit = SPI_DELAY_UNIT_USECS;
|
|
delay.value = clamp_val(us, 0, USHRT_MAX);
|
|
}
|
|
|
|
while (phytium_spi_dma_rx_busy(fts) && retry--)
|
|
spi_delay_exec(&delay, NULL);
|
|
|
|
if (retry < 0) {
|
|
dev_err(&fts->master->dev, "Rx hanged up, nents = %d\n", nents);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* fts->dma_chan_busy is set before the dma transfer starts, callback for rx
|
|
* channel will clear a corresponding bit.
|
|
*/
|
|
static void phytium_spi_dma_rx_done(void *arg)
|
|
{
|
|
struct phytium_spi *fts = arg;
|
|
|
|
clear_bit(RX_BUSY, &fts->dma_chan_busy);
|
|
if (test_bit(TX_BUSY, &fts->dma_chan_busy))
|
|
return;
|
|
|
|
complete(&fts->dma_completion);
|
|
}
|
|
|
|
static int phytium_spi_dma_config_rx(struct phytium_spi *fts)
|
|
{
|
|
struct dma_slave_config rxconf;
|
|
|
|
memset(&rxconf, 0, sizeof(rxconf));
|
|
rxconf.direction = DMA_DEV_TO_MEM;
|
|
rxconf.src_addr = fts->dma_addr;
|
|
rxconf.src_maxburst = fts->rxburst;
|
|
rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
|
rxconf.src_addr_width = phytium_spi_dma_convert_width(fts->n_bytes);
|
|
rxconf.device_fc = false;
|
|
|
|
return dmaengine_slave_config(fts->rxchan, &rxconf);
|
|
}
|
|
|
|
static int phytium_spi_dma_submit_rx(struct phytium_spi *fts, struct scatterlist *sgl,
|
|
unsigned int nents)
|
|
{
|
|
struct dma_async_tx_descriptor *rxdesc;
|
|
dma_cookie_t cookie;
|
|
int ret;
|
|
|
|
rxdesc = dmaengine_prep_slave_sg(fts->rxchan, sgl, nents,
|
|
DMA_DEV_TO_MEM,
|
|
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
|
if (!rxdesc)
|
|
return -ENOMEM;
|
|
|
|
rxdesc->callback = phytium_spi_dma_rx_done;
|
|
rxdesc->callback_param = fts;
|
|
|
|
cookie = dmaengine_submit(rxdesc);
|
|
ret = dma_submit_error(cookie);
|
|
if (ret) {
|
|
dmaengine_terminate_sync(fts->rxchan);
|
|
return ret;
|
|
}
|
|
|
|
set_bit(RX_BUSY, &fts->dma_chan_busy);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int phytium_spi_dma_setup(struct phytium_spi *fts, struct spi_transfer *xfer)
|
|
{
|
|
u16 imr, dma_ctrl;
|
|
int ret;
|
|
|
|
if (!xfer->tx_buf)
|
|
return -EINVAL;
|
|
|
|
/* Setup DMA channels */
|
|
ret = phytium_spi_dma_config_tx(fts);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (xfer->rx_buf) {
|
|
ret = phytium_spi_dma_config_rx(fts);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* Set the DMA handshaking interface */
|
|
dma_ctrl = SPI_DMA_TDMAE;
|
|
if (xfer->rx_buf)
|
|
dma_ctrl |= SPI_DMA_RDMAE;
|
|
phytium_writel(fts, DMACR, dma_ctrl);
|
|
|
|
/* Set the interrupt mask */
|
|
imr = INT_TXOI;
|
|
if (xfer->rx_buf)
|
|
imr |= INT_RXUI | INT_RXOI;
|
|
|
|
spi_umask_intr(fts, imr);
|
|
|
|
reinit_completion(&fts->dma_completion);
|
|
|
|
fts->transfer_handler = phytium_spi_dma_transfer_handler;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int phytium_spi_dma_transfer_all(struct phytium_spi *fts,
|
|
struct spi_transfer *xfer)
|
|
{
|
|
int ret;
|
|
|
|
/* Submit the DMA Tx transfer */
|
|
ret = phytium_spi_dma_submit_tx(fts, xfer->tx_sg.sgl, xfer->tx_sg.nents);
|
|
if (ret)
|
|
goto err_clear_dmac;
|
|
|
|
/* Submit the DMA Rx transfer if required */
|
|
if (xfer->rx_buf) {
|
|
ret = phytium_spi_dma_submit_rx(fts, xfer->rx_sg.sgl,
|
|
xfer->rx_sg.nents);
|
|
if (ret)
|
|
goto err_clear_dmac;
|
|
|
|
/* rx must be started before tx due to spi instinct */
|
|
dma_async_issue_pending(fts->rxchan);
|
|
}
|
|
|
|
dma_async_issue_pending(fts->txchan);
|
|
|
|
ret = phytium_spi_dma_wait(fts, xfer->len, xfer->effective_speed_hz);
|
|
|
|
err_clear_dmac:
|
|
phytium_writel(fts, DMACR, 0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int phytium_spi_dma_transfer_one(struct phytium_spi *fts,
|
|
struct spi_transfer *xfer)
|
|
{
|
|
struct scatterlist *tx_sg = NULL, *rx_sg = NULL, tx_tmp, rx_tmp;
|
|
unsigned int tx_len = 0, rx_len = 0;
|
|
unsigned int base, len;
|
|
int ret;
|
|
|
|
sg_init_table(&tx_tmp, 1);
|
|
sg_init_table(&rx_tmp, 1);
|
|
|
|
for (base = 0, len = 0; base < xfer->len; base += len) {
|
|
/* Fetch next Tx DMA data chunk */
|
|
if (!tx_len) {
|
|
tx_sg = !tx_sg ? &xfer->tx_sg.sgl[0] : sg_next(tx_sg);
|
|
sg_dma_address(&tx_tmp) = sg_dma_address(tx_sg);
|
|
tx_len = sg_dma_len(tx_sg);
|
|
}
|
|
|
|
/* Fetch next Rx DMA data chunk */
|
|
if (!rx_len) {
|
|
rx_sg = !rx_sg ? &xfer->rx_sg.sgl[0] : sg_next(rx_sg);
|
|
sg_dma_address(&rx_tmp) = sg_dma_address(rx_sg);
|
|
rx_len = sg_dma_len(rx_sg);
|
|
}
|
|
|
|
if ((base + DMA_MAX_BUF_SIZE) > xfer->len)
|
|
len = xfer->len - base;
|
|
else
|
|
len = DMA_MAX_BUF_SIZE;
|
|
|
|
len = min3(len, tx_len, rx_len);
|
|
|
|
sg_dma_len(&tx_tmp) = len;
|
|
sg_dma_len(&rx_tmp) = len;
|
|
|
|
/* Submit DMA Tx transfer */
|
|
ret = phytium_spi_dma_submit_tx(fts, &tx_tmp, 1);
|
|
if (ret)
|
|
break;
|
|
|
|
/* Submit DMA Rx transfer */
|
|
ret = phytium_spi_dma_submit_rx(fts, &rx_tmp, 1);
|
|
if (ret)
|
|
break;
|
|
|
|
/* Rx must be started before Tx due to SPI instinct */
|
|
dma_async_issue_pending(fts->rxchan);
|
|
|
|
dma_async_issue_pending(fts->txchan);
|
|
|
|
/*
|
|
* Here we only need to wait for the DMA transfer to be
|
|
* finished since SPI controller is kept enabled during the
|
|
* procedure this loop implements and there is no risk to lose
|
|
* data left in the Tx/Rx FIFOs.
|
|
*/
|
|
ret = phytium_spi_dma_wait(fts, len, xfer->effective_speed_hz);
|
|
if (ret)
|
|
break;
|
|
|
|
reinit_completion(&fts->dma_completion);
|
|
|
|
sg_dma_address(&tx_tmp) += len;
|
|
sg_dma_address(&rx_tmp) += len;
|
|
tx_len -= len;
|
|
rx_len -= len;
|
|
}
|
|
|
|
phytium_writel(fts, DMACR, 0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int phytium_spi_dma_transfer(struct phytium_spi *fts, struct spi_transfer *xfer)
|
|
{
|
|
unsigned int nents;
|
|
int ret;
|
|
|
|
nents = max(xfer->tx_sg.nents, xfer->rx_sg.nents);
|
|
|
|
/*
|
|
* large transfer length caused spi RX FIFO full event
|
|
* transfer 4096 bytes each time
|
|
*/
|
|
if (xfer->len <= DMA_MAX_BUF_SIZE)
|
|
ret = phytium_spi_dma_transfer_all(fts, xfer);
|
|
else
|
|
ret = phytium_spi_dma_transfer_one(fts, xfer);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (fts->master->cur_msg->status == -EINPROGRESS) {
|
|
ret = phytium_spi_dma_wait_tx_done(fts, xfer);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (xfer->rx_buf && fts->master->cur_msg->status == -EINPROGRESS)
|
|
ret = phytium_spi_dma_wait_rx_done(fts);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void phytium_spi_dma_stop(struct phytium_spi *fts)
|
|
{
|
|
if (test_bit(TX_BUSY, &fts->dma_chan_busy)) {
|
|
dmaengine_terminate_sync(fts->txchan);
|
|
clear_bit(TX_BUSY, &fts->dma_chan_busy);
|
|
}
|
|
if (test_bit(RX_BUSY, &fts->dma_chan_busy)) {
|
|
dmaengine_terminate_sync(fts->rxchan);
|
|
clear_bit(RX_BUSY, &fts->dma_chan_busy);
|
|
}
|
|
}
|
|
|
|
static const struct phytium_spi_dma_ops phytium_spi_dma_generic_ops = {
|
|
.dma_init = phytium_spi_dma_init,
|
|
.dma_exit = phytium_spi_dma_exit,
|
|
.dma_setup = phytium_spi_dma_setup,
|
|
.can_dma = phytium_spi_can_dma,
|
|
.dma_transfer = phytium_spi_dma_transfer,
|
|
.dma_stop = phytium_spi_dma_stop,
|
|
};
|
|
|
|
void phytium_spi_dmaops_set(struct phytium_spi *fts)
|
|
{
|
|
fts->dma_ops = &phytium_spi_dma_generic_ops;
|
|
}
|
|
EXPORT_SYMBOL_GPL(phytium_spi_dmaops_set);
|
|
|
|
MODULE_LICENSE("GPL v2");
|