llm-asr-tts/12_SenceVoice_QWen2.5_edgeTTS.py

157 lines
5.0 KiB
Python
Raw Normal View History

2025-03-16 16:41:41 +00:00
from transformers import AutoModelForCausalLM, AutoTokenizer
from cosyvoice.cli.cosyvoice import CosyVoice
from cosyvoice.utils.file_utils import load_wav
from funasr import AutoModel
import torchaudio
import pygame
import time
import sys
import sounddevice as sd
from scipy.io.wavfile import write
import numpy as np
import asyncio
import edge_tts
import os
import shutil
async def amain(TEXT, VOICE, OUTPUT_FILE) -> None:
"""Main function"""
communicate = edge_tts.Communicate(TEXT, VOICE)
await communicate.save(OUTPUT_FILE)
def record_audio(filename="output.wav", sample_rate=44100):
print("按下 Enter 开始录音...")
input() # 等待用户按下 Enter 键开始录音
print("录音中... 按下 Enter 键结束录音")
# 开始录音
recording = []
try:
def callback(indata, frames, time, status):
recording.append(indata.copy())
with sd.InputStream(samplerate=sample_rate, channels=1, callback=callback):
input() # 等待用户再次按下 Enter 键结束录音
except Exception as e:
print(f"录音出现错误: {e}")
return
# 将录音数据合并并保存为 WAV 文件
audio_data = np.concatenate(recording, axis=0)
write(filename, sample_rate, (audio_data * 32767).astype(np.int16))
print(f"录音已保存为 {filename}")
# --- 播放音频 -
def play_audio(file_path):
try:
pygame.mixer.init()
pygame.mixer.music.load(file_path)
pygame.mixer.music.play()
while pygame.mixer.music.get_busy():
time.sleep(1) # 等待音频播放结束
print("播放完成!")
except Exception as e:
print(f"播放失败: {e}")
finally:
pygame.mixer.quit()
def clear_folder(folder_path):
# 检查文件夹是否存在
if not os.path.exists(folder_path):
os.makedirs(folder_path, exist_ok=True)
print(f"文件夹 '{folder_path}' 不存在,已创建")
return
# 获取文件夹中的所有文件和子文件夹
items = os.listdir(folder_path)
# 如果文件夹为空,直接返回
if not items:
print(f"文件夹 '{folder_path}' 已经为空")
return
# 遍历文件和文件夹并删除
for item in items:
item_path = os.path.join(folder_path, item)
# 判断是否是文件夹或文件
if os.path.isfile(item_path):
os.remove(item_path) # 删除文件
print(f"删除文件: {item_path}")
elif os.path.isdir(item_path):
shutil.rmtree(item_path) # 删除文件夹及其内容
print(f"删除文件夹: {item_path}")
print(f"文件夹 '{folder_path}' 已清空")
# ------------------- 模型初始化 ---------------
# --- SenceVoice-语音识别模型
model_dir = r"D:\AI\download\SenseVoiceSmall"
model_senceVoice = AutoModel( model=model_dir, trust_remote_code=True, )
# --- QWen2.5大语言模型 ---
model_name = r"D:\AI\download\Qwen2.5-0.5B-Instruct"
# model_name = r"E:\2_PYTHON\Project\GPT\QWen\Qwen2.5-1.5B-Instruct"
# model_name = r':\2_PYTHON\Project\GPT\QWen\Qwen2.5-7B-Instruct-GPTQ-Int4'
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# --- CosyVoice - 语音合成模型 ------
# cosyvoice = CosyVoice(r'../pretrained_models/CosyVoice-300M', load_jit=True, load_onnx=False, fp16=True)
# print(cosyvoice.list_avaliable_spks())
# --- CosyVoice - 支持的音色列表
# ------------------ 模型初始化结束 ----------------
while(1):
# 使用函数录音,作为输入
record_audio("my_recording.wav")
input_file = ("my_recording.wav")
res = model_senceVoice.generate(
input=input_file,
cache={},
language="auto", # "zn", "en", "yue", "ja", "ko", "nospeech"
use_itn=False,
)
# -------- 模型推理阶段将语音识别结果作为大模型Prompt ------
prompt = res[0]['text'].split(">")[-1] + "回答简短一些保持50字以内"
messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": prompt},
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512,
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print("Input:", prompt)
print("Answer:", response)
# 答复输出文件夹
folder_path = "./out_answer/"
clear_folder(folder_path)
# 输入文本
text = response
asyncio.run(amain(text, "zh-CN-XiaoyiNeural", os.path.join(folder_path,"sft_0.mp3")))
play_audio(f'{folder_path}/sft_0.mp3')